

2nd May 2024 ASX Announcement

Amended Announcement - Burgundy Diamond Mines Annual Mineral Resources and Ore Reserves For the period ended 31 December 2023

Burgundy Diamond Mines Limited (ASX: BDM) (Burgundy, BDM or the Company) has published an amended Mineral Resource and Ore Reserve estimate as of 31st December 2023.

This announcement was authorised for release by the board of Burgundy Diamond Mines Limited.

Burgundy Diamond Mines Annual Mineral Resources and Ore Reserves For the period ended 31 December 2023

Mineral Resources and Ore Reserves at Ekati Diamond Mine as of 31 December 2023

Burgundy has updated its Mineral Resource and Ore Reserves estimates for the Ekati diamond mine for the year ending 31 December 2023, following a review of all production sources. The review has considered mining depletion, drilling results, studies and all economic parameters as well as mining and metallurgical performance.

Burgundy's updated Mineral Resources and Ore Reserves statement for the Ekati diamond mine meets the reporting requirements of the Australian Securities Exchange (ASX) Listing Rules Chapter 5 December 2019 and the Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves, December 2012 (JORC Code).

The Ekati Mineral Resources and Ore Reserves figures in the following tables are estimates as of 31 December 2023 and are carried out by the Competent Persons. Metric units are used throughout. The figures used to calculate Mineral Resources and Ore Reserves are more precise than the rounded numbers shown in the tables, hence small differences might result if the calculations are repeated using the tabulated figures.

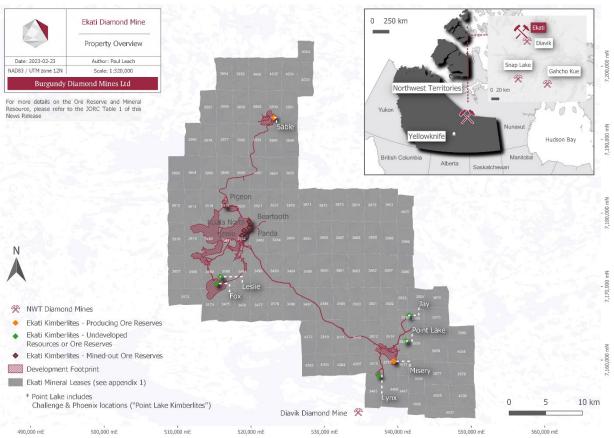


Figure 1 - Ekati Diamond Mine Property Overview.

Mineral Resources

Mineral Resources at Ekati have been estimated using a two-step process for the Sable, Misery Main, Fox, Point Lake, Phoenix, Challenge, Lynx, Jay, Leslie kimberlite pipes.

Firstly, three-dimensional (3D) object models are developed for key geological domains including analysis of spatial sample data in relation to the domains and validation of their application. This is followed by the creation of a block model storing the spatial distribution of relevant parameters.

Vulcan and Leapfrog software are used to develop 3D wireframe models of kimberlite pipes and internal lithological divisions. Drillhole boundary intersections and surface geophysical outlines are used to define the outer boundary. The lower limits of models are based on the lowest drillhole (RC or diamond) intersection. Internal domain boundaries are typically modelled as planar surfaces. Internal dilution (e.g. granitic xenoliths) is modelled as enclosed volumes assuming sub-rounded, sub-horizontal shapes. The geological models are refined and updated with mining development and production data.

Block models are built for kimberlite pipes that are deemed to have reasonable prospects of eventual economic extraction. They are periodically updated as new data are collected, or as required to meet reporting requirements and for engineering studies.

Elements considered in the determination of reasonable prospects of eventual economic extraction are:

- appropriate geological interpretation (such as pipe size, internal domains, geometry),
- assumed mining method and mining rate,
- processing method and recoveries, and
- the application of reasonably developed economic parameters based on generally accepted industry practice, experience and understanding of deposit location, shape and available information on rock characteristics and value.

Table 1 summarises the model block sizes, and the modelling method used for each kimberlite pipe where Mineral Resources are estimated.

Pipe	Model block size (m)	Date of latest model revision	Modelling method
Fox	15 by 15 by 10	Aug 2020	Simple kriging
Misery	15 by 15 by 10	Dec 2023	Ordinary kriging
Pigeon (mined-out)	10 by 10 by 10	Sep 2022	Ordinary kriging
Sable	15 by 15 by 15	Dec 2023	Simple kriging
Lynx	10 by 10 by 10	Aug 2020	Ordinary kriging
Jay	15 by 15 by 15	Feb 2020	Simple kriging
Point Lake	10 by 10 by 10	Aug 2023	Simple kriging
Phoenix	10 by 10 by 10	Aug 2023	Simple kriging
Challenge	10 by 10 by 10	Aug 2023	Simple kriging

Table 1: Ekati block model details.

The block models contain an extensive set of variables to provide a mining block model suitable for both resource evaluation and mine planning. Block model variables typically include, but are not limited to, the following:

- Grade
- Density
- Moisture
- Geological domain
- Geotechnical, metallurgical, and environmental variables
- Diamond recovery
- Diamond price

Selective mining unit (SMU) sizes in the block models vary, based on the intended mining method. The SMU size is jointly agreed to by the modelling geologist and mining engineers and is appropriate to the drillhole spacing, mining production scale, and overall geometry of each pipe. RC sampling programs provide diamond grade and size frequency distribution data for grade estimation. For resource estimates completed since 2014, the base grade estimation variable was the stones per metre cubed (spm³) from +1.0 mm diamonds. The spm³ is calculated from a subset of stones over a representative set of size fractions chosen to obviate the effects of poor recovery of small stones and variability in recovery of large stones (i.e. stone density method).

Where feasible, non-mineralised units (i.e. granitic xenoliths > 2 m in size) are modelled separately. Waste kimberlite, mud, and xenoliths <2 m in size are considered part of the models, and therefore included in the Mineral Resource estimation as internal dilution.

The block grade variable for the Jay, Sable, and Fox pipes was modelled as spm³ of a stable size fraction. It is then converted on a block-by-block basis to carats per metre cubed (cpm³) using a factor to map the estimated variable onto the chosen size frequency distribution. In all other pipes, grade is estimated directly from sampled cpm³ values. Dry bulk density in tonnes per cubic metre (t/m³) and moisture content in percent were estimated into the block model. Block grade, expressed in carats per tonne (cpt), was calculated by dividing the block cpm³ grade by the block dry bulk density value.

Drill spacing studies were conducted to support mineral resource classification confidence category assignments. No Measured Mineral Resources have been classified. Drillhole spacing classification is typically as follows:

- Indicated less than 60 m to nearest sample.
- Inferred less than 90 m to nearest sample.

In certain deposits, such as Misery Main, the kriging variance was also used to support classification categories. In models estimated since 2014, the weight attributed to the mean in the simple kriging process was used to support classification. During estimation of Mineral Resources, a slot screen size cut-off of 0.5 mm (with a 1.0 mm cut-off circular aperture screen for diamond recovery) and a 100% recovery factor is used. This allows for determination of Mineral Reserves that can include additional diamond recovery from the fines DMS plant. Conversion of Mineral Resource block model grades to reflect recovery at a 0.5 mm slot screen size is done by comparative analysis of size frequency distribution data, and adjustment factors determined for each pipe.

Dry bulk density estimates are determined for each kimberlite domain using a sufficient number of data points. Dry bulk density measurements of drill core are typically made at 2 m intervals within kimberlite and 5 m intervals with the host rock. Statistical analysis (and graphing) of the dry bulk density data for the pipes through numerous capital studies has shown very minimal variation in the crystalline country rocks (within a given rock type such as granodiorite) and low variance or systematic variation within a kimberlite domain.

Due to the low variance and large number of representative dry bulk density samples within a single kimberlite or domain, the variability in the density estimate is considered to be an insignificant risk component of Ore Reserve and Mineral Resource estimation.

The fundamental tool used in the valuation of diamonds on a mine is the size frequency distribution of a given parcel of stones. Table 2 shows a typical size frequency distribution summarising key attributes to arrive at carats per size class.

Size	Critical	Mean	Unit		
Class	Size	Size	Interval	Stones	Carats
+10CT	10.8	15.000	0.2676	24	377.78
10ct	9.8	12.043	0.1790	7	72.83
9ct	8.8	9.287	0.0467	13	119.11
8ct	7.8	8.285	0.0524	11	93.15
7ct	6.8	7.283	0.0596	33	242.67
6ct	5.8	6.280	0.0691	54	336.98
5ct	4.8	5.276	0.0822	64	333.29
4ct	3.8	4.271	0.1015	118	493.64
3ct	2.8	3.262	0.1326	281	896.11
10gr	2.5	2.646	0.0492	162	427.35
8gr	1.8	2.121	0.1427	754	1,571.70
6gr	1.4	1.587	0.1091	1,056	1,676.04
5gr	1.2	1.296	0.0669	1,036	1,342.31
4gr	0.9	1.039	0.1249	3,224	3,350.96
3gr	0.66	0.771	0.1347	6,320	4,871.12
+11	0.317	0.457	0.3185	34,425	15,746.29
+9	0.179	0.238	0.2482	73,853	17,592.48
+7	0.117	0.145	0.1847	106,796	15,455.18
+5	0.049	0.076	0.3780	506,319	38,336.74
+3	0.026	0.036	0.2752	605,279	21,604.29
-3	0.011	0.017	0.3736	461,851	7,810.61
Total				1,801,680	132,750.63

Table 2: Typical diamond size frequency distribution.

Individual stones are sized into a series of size classes (DTC or Carat/Grainer) with carats defined by Lower Critical Size and Mean Stone Size (in carats) for each class.

The Unit Interval is logarithmic width of class, used for smoothing of plotted curves. For a smaller sized width of class, stones are not counted but number of stones are determined from total carat weight and mean stone size. For larger class width sizes, stones are weighed and counted.

Figure 1 shows a typical grade/size curve graph with the horizontal axis indicating the mean stone size of given size class, and the vertical axis showing stone density (spm³ or spt). The curve shows typical decreasing stone density per size class as size increases, with some deviations in small stones and irregularities for large stones. The slope of curve represents the coarseness of the size frequency distribution, and the vertical position represents the grade.

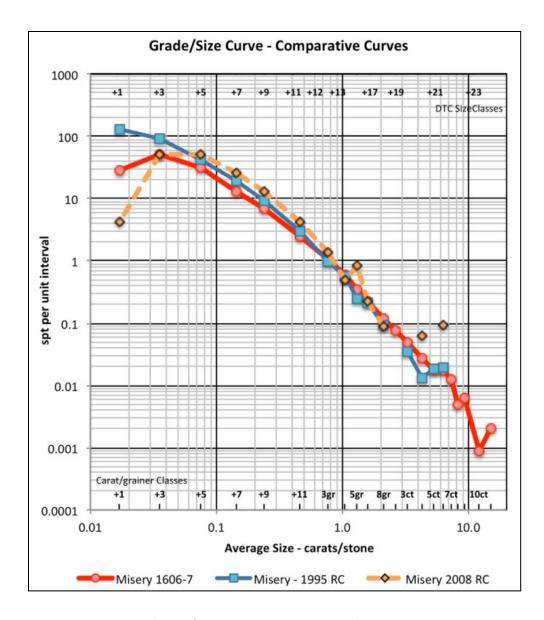


Figure 2: An example of grade/size comparative curves used for Ore Reserce and Mineral Resource estimation.

The three curves represent three parcels of the Misery pit supported by different sampling campaigns and number of carats:

- Misery 1606-7 production trial (133,000 carats) 1.0 mm lower cut-off Ekati plant
- Misery 1995 RC (3,152 carats) 0.5 mm lower cut-off, bulk sample plant
- Misery 2008 RC (718 carats) 1.2 mm lower cut-off, bulk sample plant.

This information is ultimately used to generate a \$/carat price per size class for the different kimberlite sources (see Figure 2).

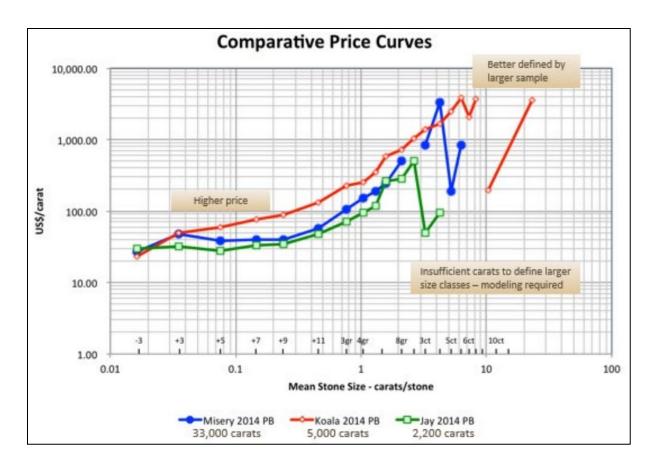


Figure 3: Example of comparative price curves for three of Ekati's kimberlites sources.

The prices in the graph above were derived from either kimberlite exploration samples or production parcels using Ekati's price book. A valid diamond valuation of an exploration or production parcel requires a detailed quality sort within each diamond size category by an experienced valuator and application of a well constrained market-based price book. The price book is reindexed periodically according to diamond market movement. Approximately 18,000 categories (price points expressed as US\$ per carat) comprise the current Ekati diamond price book. Average diamond value is a function of diamond size distribution and diamond quality. The highest value populations have both a coarse size distribution and high proportion of high-quality stones.

The average price per size category is plotted against stone size. Since there are typical more smaller stones than larger ones in a parcel, the curves are generally better constrained (or defined) at low to moderate stone sizes compared to the larger stone sizes. Also, curves are generally better constrained for production parcels which contain more diamonds and carats compared to the smaller exploration parcels. The increasing gradient of the curve indicates that the average price per carat increases as stone sizes increase.

A further consideration that affects the price and therefore also the Ore Reserve totals is diamond recovery. Different kimberlite sources have different diamond recoveries as a function of the inherent size frequency distribution and interaction with processing settings and various other contributing factors. This can be seen in Table 3 which summarises the reserve recovery factors based on a month of Ekati production.

Plant Recovery	1.2 mm (reserve)	0.5 mm (resource)	Basis of P	rice Estimate
Pipe	Recovery Factor	Price	Recovery Factor	Price	Type	No of Carats
	vs 0.5 mm	(DC2002PB(660))	vs 0.5 mm	(DC2002PB(660))	туре	NO OF Caracs
Sable	80%	150	100%	127	Trial	48,947
Pigeon	85%	137	100%	122	Trial	33,972
Misery UG	75%	54	100%	45	Trial	248,933
Misery South	75%	56	100%	45	Trial	13,751
Misery SW	75%	45	100%	38	Trial	100,438
Fox VLG	85%	276	100%	242	Expl	2,603
Coarse Ore Rejects	65%	82	100%	67	Trial	12,859
Point Lake	85%	83	100%	75	Expl	458
Phoenix	80%	62	100%	55	Expl	372
Challenge	70%	55	100%	43	Expl	390
Jay RVK	90%	42	100%	40	Expl	4,137
Jay VK	85%	42	100%	39	Expl	4,137
Lynx	80%	180	100%	149	Trial	288,196

Table 3: Example of Ekati's price recovery matrix.

As of 31 December 2023, Ekati's Indicated Mineral Resources are estimated to contain approximately 140.3 million carats. Ekati's Indicated and Inferred Mineral Resources are shown in Table 4 below:

Kimberlite pi	Kimberlite pipes Measured Resources		Indicated Resources			Inferred Resources				
Pipe Name	Туре	M t	Ct/t	M ct	M t	Ct/t	M ct	M t	Ct/t	M ct
Sable	OP	-	-	_	7.1	0.9	6.8	0.3	1.0	0.3
Point Lake	OP	-	_	_	31.7	0.8	24.0	9.6	0.8	7.3
Phoenix	OP	-	_	_	0.0	0.0	0.0	1.8	1.4	2.5
Challenge	OP	-	_	_	0.0	0.0	0.0	2.6	1.3	3.4
Leslie	OP	-	_	_	0.0	0.0	0.0	50.8	0.3	16.3
Misery Main	UG	-	_	_	0.5	5.1	2.7	1.2	5.6	6.9
Fox	UG	-	_	_	45.6	0.4	16.5	5.1	0.4	2.2
Stockpile	OP	-	-	_	0.1	1.7	0.1	6.7	0.2	1.0
Jay	OP	-	_	_	48.1	1.9	89.8	4.2	2.1	8.7
Lynx	OP	-	-	-	0.5	0.8	0.4	0.2	0.8	0.2
Total Mineral Resc	ources	-	-	-	133.7	1.0	140.3	82.6	0.6	48.7

⁻ Millions of tonnes (Mt), Carats per tonne (Ct/t), Millions of carats (Mct)

Table 4: Ekati Resources as 31 December 2023.

Notes on Mineral Resources Table

- Ekati Mineral Resources are classified as Indicated and Inferred (no Measured category) and are reported on a 100% basis. Tonnes are expressed as dry metric tonnes. Grade is in carats per tonne (cpt).
- Mineral Resources are reported inclusive of Ore Reserves. Mineral Resources that are not Ore Reserves do not have demonstrated economic viability.
- Mineral Resources are reported at +0.5 mm (based upon diamonds that would be recovered by the Ekati Bulk Sample Plant using 0.5 mm width slot de-grit screens and retained on a 1.0 mm circular aperture screen.

- Mineral Resources have been classified considering drill hole spacing, volume and moisture models, grade, internal geology and diamond valuation, mineral tenure, processing characteristics and geotechnical and hydrogeological factors.
- Mineral Resources amenable to open pit mining methods include Sable, Point Lake, Phoenix, Challenge, Lynx, and Jay. Conceptual pit designs for open cut Mineral Resources (Sable, Point Lake, Leslie, Lynx, and Jay) were completed using Whittle shell analysis.
- Mineral Resources amenable to underground mining methods include Misery Main and Fox. Underground design for Misery Main is based on sublevel retreat method and underground design for Fox Deep is based on the Prefeasibility Study completed in 2018 by Dominion Diamond Mines.
- Stockpiles are located near the Fox open pit and were mined from the uppermost portion of the Fox open pit operation. Minor run-of-mine stockpiles (open pit and underground) are maintained and are available for blending of kimberlite sources at the process plant.

JORC Table 1 summarised in Appendix A of this document provides additional information on the measures taken by Ekati's operating team to ensure appropriate database integrity, geological interpretation and estimation modelling techniques are employed to define and quantify Mineral Resources.

The Mineral Resources have reasonable potential to be mined, but do not have mining losses and/or dilution applied and as such they represent in situ values. Mineral Resource classification involves geologic, mining, processing and economic constraints, and the Mineral Resources have been defined within a conceptual stope design or a conceptual open pit shell. Depletion has been included in the estimates. No measured Mineral Resources are reported.

While in the judgement of the Competent Person there are realistic expectations that all or part of the Mineral Resources will eventually become Proved or Probable Ore Reserves, there is no guarantee that this will occur, as the result depends on further technical and economic studies and prevailing economic conditions in the future.

The Company cautions that Mineral Resources that are not Ore Reserves do not have demonstrated economic viability. Factors which may affect the Mineral Resource estimates include diamond valuation assumptions, diamond grade estimation, geological modelling, geotechnical assumptions, and mining methods.

Ore Reserves

Ore Reserve estimates are based on material classed as Indicated Mineral Resources with dilution and mining/processing recovery factors applied. Depletion has been included in the estimates. Factors which may affect the Ore Reserve estimates include diamond price and valuation assumptions, changes to the assumptions used to estimate diamond carat content, horizontal block cave designs, open pit designs, geotechnical, mining and process plant recovery assumptions, appropriate dilution control being able to be maintained, changes to capital and operating cost estimates and variations to the permitting, operating or social licence regime assumptions.

All Mineral Resources converted to Ore Reserves have undergone pre-feasibility and/or feasibility studies following Canadian Institute of Mining, Metallurgy and Petroleum (CIM) guidelines. The level of study for each kimberlite deposit is shown in Table 5 below.

Kimberlite Pipe	Level of study (year published)
Fox Underground	Prefeasibility (2018)
Misery Underground	Prefeasibility (2017)

Sable	Prefeasibility (2016)
Point Lake	Prefeasibility (2020)

Table 5: Level of study completed for each kimberlite deposit.

Diamond recovery factors vary by pipe and in some instances by kimberlite phase. Diamond quality assessment is based on exploration parcels and production trial parcels if available.

Site-specific metallurgical factors are known due to the operation of the main process plant facility for 25 years.

Metallurgical test work and associated analytical procedures were performed by recognised testing facilities, and the tests performed were appropriate to the mineralisation type. Samples selected for testing were representative of the various kimberlite types and domains.

Industry-standard studies were performed as part of process development and initial on-site bulk sample plant design. Subsequent production experience and focused investigations have guided plant expansions and process changes. Recovery estimates are based on appropriate metallurgical test work and confirmed with production data and are appropriate for the various kimberlite domains.

While there are no deleterious elements in diamonds processing, high granite or clay quantities can lead to process issues. These are managed by a combination of surface sorting and blending of different kimberlite domains.

As explained, the diamond price is estimated for each size cut-off using exploration or production sample parcels, and stone frequency distributions. The average diamond price (diamond reference price) is estimated for each pipe (and in some cases, multiple geological domains within a pipe) using exploration and/or production parcels ranging in size from several hundred carats to tens of thousands of carats.

Diamonds within a kimberlite can range in quality from very low-value boart (fibrous diamond) to very high gem quality stones. The average diamond price is a function of diamond size distribution and diamond quality/colour. Uncertainty associated with diamond price estimation is related directly to parcel size with the ideal parcel size for commercial kimberlite evaluation being approximately 5,000 carats.

The valuation of diamond parcels is periodically updated to a more recent Price Book to ensure the diamond prices are representative of current sorting categories and market conditions. Prices in the Price Book are updated with each sale. To facilitate economic analysis, all the pipe valuations are carried out on a common fixed Price Book, and the Diamond Price Index is then applied to reflect market movement relative to the date when the Price Book was set. For planning purposes, these reference prices are estimated on an annual basis and as reference prices for application of the escalated price forecast.

The diamond price is estimated for each size cut-off using exploration or production sample parcels and stone frequency distributions.

Given the production status of many of the Ekati kimberlite pipes, the parcel carat size used for the determination of the US\$/carat is large, where production or trial mining data was available, to smaller where only limited mining or exploration parcels were available. Ore Reserves are estimated using a 1.2 mm slot degrit bottom cut-off size (using a 1.0 mm cut-off circular aperture screen for final diamond recovery), whereas Mineral Resources are calculated using a 0.5 mm slot de-grit bottom cut-off size (using a 1.0 mm cut-off circular aperture screen for final diamond recovery).

As of 31 December 2023, Ekati's Probable Ore Reserves are estimated to contain approximately 20.3 million carats. Burgundy's Proven and Probable Ore Reserves are shown in Table 6 below.

	Proven Ore Reserves			Probable Ore Reserves		
Project/Operation	Tonnes (millions)	Grade (cpt)	Carats (millions)	Tonnes (millions)	Grade (cpt)	Carats (millions)
Sable Open Pit	-	-	-	3.0	0.7	2.2
Point Lake Open Pit	-	-	-	9.1	0.6	5.3
Misery Underground	-	_	-	0.7	3.3	2.3
Fox Underground	-	_	-	31.0	0.3	10.3
Run of Mine Stockpiles	ı	_	-	0.1	0.8	0.1
Total Ore Reserves	-	-	-	43.9	0.5	20.3

Table 6: Ekati Reserves as 31 December 2023.

Notes on Ore Reserve Table

- All Ekati Ore reserves are classified as Probable. Tonnes are expressed as dry metric tonnes. Grade is in carats per tonne (cpt). Carat estimate includes process plant recovery.
- Ore Reserve carats are reported according to 2020 Ekati process plant configuration (1.2 mm slot de-grit screens with final recovery using a 1.0 mm screen circular aperture cut-off).
- Ore Reserves that are mined or will be mined using open pit methods include Sable and Point Lake. Sable open pit designs assumed dilution of 6% waste and mining recovery of 98% diluted material. The Point Lake open pit design assumes dilution of 2% waste and mining recovery of 98% diluted material.
- Point Lake's Open Pit Probable Ore Reserves have been reduced by 0.6 million dry metric tonnes from year end reserves dated 31 December 2022 due to pit design changes and block model updates.
- Ore Reserves that are mined or will be mined using underground methods include Misery and Fox. The underground design for Misery is based on sublevel retreat with 25m levels assuming an overall dilution of 12% waste and overall mining recovery of 94% of diluted material. Fox Deep Ore Reserves are based on the Prefeasibility Study completed in 2018 by Dominion Diamond Mines.
- Stockpiles are minor run-of-mine stockpiles (sourced from open pit and underground operations) that are available to maintain blending to the process plant.
- Tables may not sum as totals have been rounded.

Competent Persons' Statements

The information in this report, which relates to exploration results, Mineral Resource estimates and Ore Reserves is based on information compiled by:

Mr. Ryan Connolly, P. Geo, who is a Member of Northwest Territories Association of Professional Engineers and Geoscientists and is a full-time employee of Burgundy Diamond Mines' Arctic Canadian Diamond Company. Mr Connolly has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves. Mr Connolly consents to the inclusion in the announcement of the matters based on this information in the form and context in which it appears.

Mr. Satish Chhabra who is a Member of Professional Engineers of Ontario, Canada and is a full-time employee of Burgundy Diamond Mines' Arctic Canadian Diamond Company Mr Chhabra has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves. Mr Chhabra consents to the inclusion in the announcement of the matters based on this information in the form and context in which it appears.

Mr. Jeremy Taylor who is a member of the Australasian Institute of Mining and Metallurgy (MAusIMM) and a Fellow of the Southern African Institute of Mining and Metallurgy (FSAIMM) and is a full-time employee of Burgundy Diamond Mines. Mr. Taylor has sufficient experience relevant to the style of mineralization and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves. Mr Taylor consents to the inclusion in the announcement of the matters based on this information in the form and context in which it appears.

Appendices

Appendix 1 details Table 1 of JORC Code 2012

Appendix 2 details the Ekati Mine Lease

Appendix 1

JORC Code, 2012 Edition – Table 1

Section 1: Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria Sampling techniques

JORC Code explanation

Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.

Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.

Aspects of the determination of mineralisation that are Material to the Public Report.

In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay').

In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.

Commentary

Mineral Resources are estimated for the Sable, Misery Main, Fox, Point Lake, Phoenix, Challenge, Lynx, Jay and Leslie kimberlite pipes and for stockpiles containing run-of-mine (ROM) material.

Ore Reserves are estimated for the Sable (open pit), Misery Main (underground), Point Lake (open pit) and Fox (underground) kimberlite pipes and for stockpiles containing ROM materials. Sampling techniques used to estimate the Ore Reserve and Mineral Resource statements include various drilling techniques to define the volume, tonnage, and diamond content. Extensive open pit and underground mining and processing data also contribute to the Ore Reserve and Mineral Resource estimate.

Drilling completed on the Ekati Diamond Project ("Ekati") between 1991 and 31 December 2022 includes 1,434 core (diamond drill) holes (264,420 m), 111 sonic drill ("Sonic") holes (2,596) and 523 reverse circulation (RC) holes (114,539 m). All drillholes have been collated into a secure database.

RC sampling programs are used for diamond grade and valuation. A small subsample (approximately 300 cm³) of RC drill material is taken for every 2 m of drilling within kimberlite and a representative portion of this material (approximately 50–100 cm³) is washed and retained; these drill chips are examined and described macroscopically and under binocular microscope. As the drill sample consists of small rock fragments and drill fines, RC chip logs are less precise than those obtained from core logging.

Ekati staff consider that an accuracy of approximately ± 1 m is possible when combining chip geology with downhole geophysical logs. Prior to 2019, the RC samples were processed through an on-site sampling plant for diamond grade and diamond valuation used for Ore Reserve and Mineral Resource reporting.

The 2019 RC drill samples from the Point Lake and Challenge kimberlite pipes were processed at the Saskatchewan Research Council (SRC). The quality

Criteria	JORC Code explanation	Commentary
		management system (QMS) for SRC Geoanalytical Laboratories adheres to the ISO 17025:2017 standard and is subject to regular assessment by the accrediting body (Standards Council of Canada). The QMS has specific procedures for document and data control.
		Core hole sampling programs are used for determination of dry bulk density, moisture content of host rock and kimberlite and lithological characterisation. Sample spacing has historically varied from 1 m to 10 m in kimberlite and every 10 m in host rock.
		The density and spatial distribution of RC drillholes between pipes varies considerably and depends on several factors including pipe size, geologic complexity, and grade characteristics relative to economic cut-offs.
		If warranted, additional open pit/underground bulk samples are excavated into kimberlites pipes to provide a larger sample size for the purpose of size frequency distribution and diamond prices.
		The Mineral Resource estimate for stockpiles is based on the Ore Reserve and Mineral Resource estimate for each primary source. The stockpiles are not sampled for diamond grade and value (known from primary ROM material); however, they are surveyed on an annual basis – and tracked monthly via depletion – for determining tonnage.
		The Competent Person is confident that sampling methods meet industry- standard practices for diamond projects and can be used for Ore Reserve and Mineral Resource estimation and mine planning purposes.
Drilling techniques	Drill type (e.g. core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka,	A variety of drilling techniques have been used at the Ekati Mine since 1991 to recover information on the location, type of ore and diamond content.
	sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core	Drilling techniques used on the property include diamond core drilling, sonic drilling and RC drilling, of varying diameter (HQ, NQ, BQ) and orientation (vertical to angled). Typical drillhole lengths range from <100 m to 600 m.
	is oriented and if so, by what method, etc.).	Core drilling
		 Used to define the kimberlite pipe contacts, wall-rock conditions, internal structure(s) and fracturing and internal geology.
		 Core drilling is additionally used to obtain geotechnical and hydrogeological data.

Criteria	JORC Code explanation	Commentary
		It also is used to obtain microdiamond and mineral chemistry samples for assessing diamond carrying capacity. In the case of Misery Main, microdiamond data from core holes is used in combination with RC grade data for grade modelling.
		 Core drilling used standard core barrels, and synthetic diamond or carbide bits, reaming shells, and casing shoes.
		 Hole diameters used to date include HQ (63.5 mm core diameter), NQ (46.7 mm) and BQ (36.5 mm).
		 Oriented core is used for geotechnical investigation of the wall rocks and is not employed in kimberlite.
		 Orientation tools include clay imprint, Reflex ACT¹ tool (digital core orientation system), and optical/acoustic televiewing.
		RC drilling
		 Used for diamond grade estimation and valuation, in conjunction with bulk sampling techniques. Samples are processed through an on-site sampling plant.
		■ The diameter of drillholes employed prior to 1995 ranges from 27 cm to 71 cm, but from 1995 to 2008, the hole diameter was standardised to between 31 cm and 45 cm.
		■ The 2015 and 2016 winter drilling programs and 2018–2019 winter drilling programs used large diameter drilling (LDD) in order to provide larger individual samples for grade estimation.
		■ The drillhole diameters for the 2015, 2016, 2018 and 2019 programs ranged from 45 cm to 61 cm.
		Sonic drilling
		 Used to core both soil and bedrock along proposed civil construction projects. Recovered soil is geotechnically logged and geotechnical laboratory testing is performed on selected samples.
		 Sonic drilling samples are not used for diamond information purposes (grade and valuation).

Criteria	JORC Code explanation	Commentary
		The sonic drilling method uses relatively high frequency mechanical vibration, down pressure and optional rotation to advance an inner drill string and an outer casing. A one-piece core barrel with a 150 mm diameter is threaded onto the bottom of the inner drill string and obtains samples.
		 For core holes, downhole surveys were done with industry standard instruments (e.g. Maxibor and Century Geophysical Corporation gyroscope).
		■ Three Century Geophysical Corporation tools, including the "9095" tool (for gyroscopic deviation surveying); the "9065" three-arm calliper; and the "9511" tool (conductivity induction and natural gamma readings), are used on all RC holes.
		All core and RC drillhole collars are surveyed with total station global positioning system (GPS) instruments prior to and after drilling. The Competent Person considers the drillhole collar location error to be minimal.
recovery characteristics of the control of the cont	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Within wall-rock, typical recoveries are 95 to 100% for both core and RC drillholes. In Kimberlite, the core recoveries can be as low as 20% and as high as 95%, however, are more typically in the 75% to 85% range. For RC drillholes, kimberlite recoveries may range from 50% to over 100% in cases of in-hole sloughing. For core samples, recovery is assessed through direct measurements of recovered core versus drillhole interval. RC sampling recovery relies on calliper data for volume coupled with dry bulk density data of RC chips and/or nearby drillholes.
		The recovery is largely a function of the hardness and alteration of the kimberlite. Details of sampling methods are discussed in Sampling Techniques criteria of this table.
		Prior to 2019, sampled drilling material was processed through an on-site sample plant. 2019 RC drill samples from the Point Lake kimberlite were processed at the SRC.
		The quality of the analytical data is reliable and sample preparation, sampling protocols, analysis, and security are generally performed in accordance with diamond exploration best practices and industry standards.

Criteria	JORC Code explanation	Commentary
		The Competent Person is confident that no preferential sampling or preferential loss or gain of sampling material has occurred. A relationship between sample recovery and grade is considered by the Competent Person as non-material for kimberlite diamond deposits.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged.	Core drillholes are logged in detail by trained kimberlite geologists and/or by trained geotechnical consultants. Geological logging is undertaken on a 1:100 scale using logging sheets specifically developed for the Ekati Diamond Mine. Digital geological and geotechnical logging is completed, and the core is photographed before being stored in the attached unheated core storage building. Geological logging utilises a digital logging form for both wall-rock lithology, kimberlite/wall-rock contacts, and internal kimberlite lithology. Kimberlite lithologies are classified according to a kimberlite classification scheme standard to the industry. Wall-rock is logged by: Rock-type. Mineralogy. Alteration. Rock strength. Major structures. Kimberlite core is logged by: Concentration of macrocrystic olivine. Matrix composition. Abundance and type of country-rock xenoliths. Approximate abundance of indicator minerals. Rock fabric, colour, and alteration. Colour photographs are taken of delineation drill core and used to verify significant contacts and lithologies as well as provide a permanent record of the drill core. These photographs are annotated with the unit names and lithological contacts.

Criteria	JORC Code explanation	Commentary
		In the opinion of the Competent Person, the quantity and quality of the lithological (geological), geotechnical, collar and downhole survey data collected in the exploration and infill drill programs are sufficient to support Ore Reserve and Mineral Resource estimation.
		The Competent Person considers the total % of logged material is irrelevant (evaluation stage) given the number of years the mine has been in production and the geological confidence of the deposits.
Subsampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	A small subsample (approximately 300 cm³) of RC drill material (chips) is taken for every 2 m of drilling within kimberlite and a representative portion of this material (approximately 50–100 cm³) is washed and retained. These drill chips are examined and described macroscopically and under binocular microscope. As the drill sample consists of small rock fragments and drill fines, RC chip logs are less precise than those obtained from core logging. Ekati staff consider that an accuracy of approximately ±1 m is possible when combining chip geology with downhole geophysical logs. Core drilling material is primarily used for geological/geotechnical logging and is typically only used for indications of diamond carrying capacity at the exploration stages. It is not used for diamond price/valuation purposes. In the opinion of the Competent Person, the quality control, sampling procedures and sampling sizes meet industry standards.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model,	Prior to 2019, sampled material was processed through an on-site sampling plant, and therefore not subject to external laboratory checks. The sample plant underwent several quality control procedures (tracer tests, visual inspections, plant washing for decontamination) and multiple industry standard audits. The 2019 RC drill samples from the Point Lake kimberlites were processed at the SRC. The QMS for SRC Geoanalytical Laboratories adheres to the ISO 17025:2017 standard and is subject to regular assessment by the accrediting

Criteria	JORC Code explanation	Commentary			
	reading times, calibrations factors applied and their derivation, etc.	body (Standards Council of Canada). The QMS has specific procedures for document and data control.			
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	The Competent Person is confident that all control procedures have been adopted and acceptable levels of accuracy have been met.			
Verification of sampling and	The verification of significant intersections by either independent or alternative company personnel.	Data verification is undertaken on geological, geotechnical, survey and bulk density data collected. Data are reviewed for accuracy by the Resource and/or Production Geologists and corrected as necessary.			
assaying	The use of twinned holes.	The findings of this data validation process are summarised and any			
	Documentation of primary data, data entry procedures, data verification, data storage	modifications to the database are reviewed by appropriate staff prior to implementation of those changes.			
	(physical and electronic) protocols.	A reasonable level of verification has been completed during the exploration			
	Discuss any adjustment to assay data.	and production phases, and no material issues would have been left unidentified from the verification programs undertaken.			
		The Competent Person is confident that the quality of the analytical data is reliable and sample preparation, analysis, and security are generally performed in accordance with diamond exploration and operational best practices and industry standards.			
Location of	Accuracy and quality of surveys used to	Collar surveys			
data points	locate drillholes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	• All surface core hole collar positions are surveyed using a real-time GPS, providing an accuracy of ±0.01 m. Hole collar, dip and azimuth are verified by surveying the top and bottom of the in-hole drill steel and then calculating the initial azimuth and dip of the hole at surface.			
	Specification of the grid system used.	All RC drillhole collars are surveyed using a real-time GPS instrument prior			
	Quality and adequacy of topographic control.	to and after drilling; these have an accuracy of ±10 mm. Ekati staff consider that the drillhole collar location error is minimal.			
		Downhole surveys			
		 RC downhole surveys were completed with one of four survey instruments: EZ-shot, Lightlog, Maxibor or Century Geophysics 9096 Gyroscope. 			

Criteria	JORC Code explanation	Commentary		
		Currently, only Maxibor and gyroscope are used as they proved to be the most consistent.		
		 The maximum error in the drillhole location for holes less than 100 m long is about 1 m, while the locations of longer holes (100–600 m) are accurate to within approximately 1 m per 100 m drilled over the entire length of the drillhole. In 2004, survey precision and accuracy were tested by coring two holes of significant length (300 m) collared by the surface surveyors to target an underground heading location provided by underground surveyors. Both holes resulted in absolute error of less than the anticipated +3 m of error when they breached the underground workings. This validated the surface and underground location surveys of two discrete points (drill and drill target) and indicated that the downhole deviation surveys are providing useable modelling data. 		
		Previous mining has intersected old large diameter drillholes (open and grouted) which have been used to validate and confirm the drillhole survey. When drillholes are encountered in the underground mine, the intersection is surveyed using differential GPS and compared to known drillholes in the area to determine which drillhole was intersected. There are no known instances where surveyed intersections did not closely coincide with downhole drillhole surveys.		
		The projection system used is North American Datum (NAD) 1983 Universal Transverse Mercator (UTM) Zone 12N. The digital elevation model (DEM) was interpolated from 1 m, 2 m and 5 m contour data from an airborne survey flown in 2002.		
		The Competent Person considers the tools, methods, and quality of geospatial data to be appropriate.		
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Ore Reserve & Mineral Resource estimation procedure(s) and classifications applied.	The data spacing is variable within a single kimberlite pipe and other kimberlite pipes. Accordingly, the Mineral Resource classification varies from Inferred to Indicated. There is no Measured classification. RC sample intervals are typically composited over 12–30 m intervals for smaller hole diameters, whereas larger hole diameters do not sample composite. Collected samples typically range from 5 tonnes to 9 tonnes; the sample intervals are selected appropriately to ensure each composite contained at least 30 diamonds to mitigate the effect of variable diamond particle sizes.		

Criteria	JORC Code explanation	Commentary
	Whether sample compositing has been applied.	The Competent Person considers the data spacing and distribution appropriate for the Ore Reserve and Mineral Resource estimation and classification.
Orientation of data in relation to geological	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The drill sample collection process is designed to ensure that a representative, unbiased and uncontaminated sample is collected intact at the drill. RC drilling has been noted as a potential source of stone damage from the bit itself or high-pressure transport around sharp corners.
structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have	Regular production reconciliation audits are in-place, adding to the robust and unbiased nature of the geological data used in the reporting of Ore Reserves and Mineral Resources
	introduced a sampling bias, this should be assessed and reported if material.	The Competent Person is of the opinion that no sampling bias has occurred, and that all drilling and sampling to date is sufficient for reporting and estimating kimberlite diamond Ore Reserve and Mineral Resources.
Sample security	The measures taken to ensure sample security.	During RC drilling programs for large-scale samples, the RC drilling area is monitored by an Ekati site security officer and access is limited to essential personnel only. Sample bags are secured with zip ties and numbered security tags which are logged-in by security staff. The sample locks are only removed by security staff under supervision of the project supervisor.
		A card-locked door controls the access to the sample plant and strategically installed cameras operate in sensitive areas such as the recovery plant, the sample plant is a high-risk area where 100% of the employees are searched by a security officer prior to exiting the area.
		For each sample, the x-ray concentrate and the grease table goods are transferred to the sort-house for diamond sorting. Each sample is kept separate from the process plant goods and individually labelled for shipment to Ekati's sorting and valuation facility located in Yellowknife.
		The sample goods are individually sieved and cleaned in Yellowknife.
		The Competent Person is confident that industry standard sampling security protocols were in place.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	The sample plant adjacent to the processing plant building was routinely used for diamond recovery audits and for grade control until 2012. In 2014, a small diamond recovery circuit was added the main process plant and targeted

Criteria	JORC Code explanation	Commentary
		coarse rejects (tailings) have periodically been processed plant along with ROM ore through the main process plant circuit.
		The Competent Person has audited and reviewed on-site data including reviews of exploration programs and sample results used within the Ore Reserve and Mineral Resource estimate.
		The QMS for SRC Geoanalytical Laboratories adheres to the ISO 17025:2017 standard and is subject to regular assessment by the accrediting body (Standards Council of Canada). The QMS has specific procedures for document and data control. SRC applies external sample quality audits and quality controls such as density bead testing of heavy concentrates, diamond tracer tests and routine spiking of diamond concentrates.
		Data verification is undertaken on geological, geotechnical, survey and bulk density data collected. Data are reviewed for accuracy by the Resource and/or Production Geologists and corrected as necessary. The findings of this data validation process are summarised and any modifications to the database are reviewed by appropriate staff prior to implementation of those changes.
		The Competent Person believes a reasonable level of verification has been completed during the exploration and production phases, and no material issues would have been left unidentified from the verification programs undertaken. Moreover, the Competent Person is confident that the quality of the analytical data is reliable and sample preparation, analysis, and security are generally performed in accordance with diamond exploration best practices and industry standards.

Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral	Type, reference name/number, location and	See Appendix 2 for Ekati's Mineral Lease Table.
tenement and land tenure status	ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	At the time of this report, the Competent Person is unaware of any impediments to operating in the Ekati project area.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The discovery of kimberlites in the Lac de Gras region was the result of systematic heavy mineral sampling over a 10-year period by prospectors Dr Charles E. Fipke and Dr Stewart Blusson.
		By late 1989, Dia Met Minerals Ltd (Dia Met) was funding the programs and began staking mineral claims in the region. After making significant indicator mineral finds in the area, Dia Met approached BHP Minerals (BHP) as a potential partner. The Core Zone Joint Venture Agreement between BHP, Dia Met, Charles Fipke and Stewart Blusson was subsequently signed in August 1990 (no longer in effect).
		Dia Met share was acquired by BHP in 2001.
		The first diamond-bearing kimberlite pipe on the property was discovered by drilling in 1991. An Addendum to the Core Zone Joint Venture in October 1991 gave BHP the right to acquire additional mineral claims within 22,500 ft of the exterior boundaries of the then property area. The claims acquired as a result became the Buffer Zone Joint Venture claims (no longer in effect).

Criteria	JORC Code explanation	Commentary
		To date, exploration activities have included till sampling, airborne and ground geophysical surveys, and drilling programs. More than 400 geophysical and/or indicator dispersion targets were drilled from 1991 to 2022, with a total of 175 kimberlites discovered on the Ekati property. The kimberlites were prioritised using microdiamond and indicator mineral chemistry. Thirty-nine kimberlite occurrences were subsequently tested for diamond content using RC drilling and/or surface bulk samples.
Geology	Deposit type, geological setting and style of mineralisation.	Diamond-bearing kimberlite pipes which are part of the Lac de Gras kimberlite field within the central Slave craton in Northern Territories of Canada.
Drillhole information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes:	The Competent Person considers this to be non-material given the advanced stage of the Ekati Project (operating mine) with stated Ore Reserves and Mineral Resources
	 easting and northing of the drillhole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drillhole collar 	
	dip and azimuth of the hole	
	downhole length and interception depth	
	hole length.	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	Not applicable – Exploration Results are not being reported.

Criteria	JORC Code explanation	Commentary
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between	These relationships are particularly important in the reporting of Exploration Results.	Not applicable – Exploration Results are not being reported.
mineralisation widths and intercept	If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported.	
lengths	If it is not known and only the downhole lengths are reported, there should be a clear statement to this effect (e.g. 'downhole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views.	Not applicable – Exploration Results are not being reported.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Not applicable – Exploration Results are not being reported.

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Not applicable – Exploration Results are not being reported.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not	Not applicable – further exploration is not the subject of this news release.

Section 3: Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation	Ekati's operating team maintains a site-wide Records Information Management (RIM) system using digital filing. All non-digital information relevant to the Ore Reserve and Mineral Resource
	purposes. Data validation procedures used.	has been scanned and is stored in this system. All digital data not compatible with Ekati's digital filing system are stored on file servers at Ekati and Yellowknife.

Criteria	JORC Code explanation	Commentary				
		The resource and produc and metadata documenta maintain an audit trail of t	tion. These are	employed to sec		
		Verification procedures in database checks using so all hardcopy and digital da Geologist.	oftware routines.	. After this prelim	inary error-checking,	
		The Competent Person is database protocols and v				
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.			ssues have been	nave been identified by the	
	If no site visits have been undertaken indicate why this is the case.	estimation.				
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	The geological interpretation is based on a standard kimberlite emplacem model, which suggests kimberlite "pipes" are vertically emplaced volcanic intrusive bodies that maintain a predictable geometry with depth. This has			placed volcanic depth. This has	
	Nature of the data used and of any assumptions made.	been demonstrated through surface expression, extensive open pit and underground excavations and drilling data.				
	The effect, if any, of alternative interpretations on Mineral Resource	The Ekati property kimberlites contain various kimberlites domains, which represent varying rock types within a kimberlite.				
	estimation. The use of geology in guiding and controlling Mineral Resource estimation.	The characterisation of the in the Ore Reserve and M considered accurate by the	ineral Resource	estimate in Table	es 1 and 2 are	
	The factors affecting continuity both of grade and geology.	(confidence) category.				
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike	Details of the Mineral Resource and Ore Reserve extents and variability car found in the table below:			and variability can be	
	or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	Kimberlite Pipes	Туре	Starting elevation (masl)	Ending elevation (masl)	

Criteria	JORC Code explanation	Commentary			
		Mineral Resources			
		Sable	Open pit	480	122
		Point Lake	Open pit	415	165
		Phoenix	Open pit	410	260
		Challenge	Open pit	425	195
		Leslie	Open pit	450	150
		Misery Main Underground	Underground	170	-80
		Fox Underground	Underground	250	-350
		Jay	Open pit	375	0
		Lynx	Open pit	410	180
		Ore Reserves			
		Sable*	Open pit	362	230
		Point Lake	Open pit	400	280
		Misery Main*	Underground	140	0
		Fox Underground	Underground	-170	-270
		*Current operations (part	ly depleted).		
		Table notes:			
		masl = metres above	sea level.		
		For underground opeOre Reserves stated			d as 2000+ xmasl.
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	domains, and validate their application. The second step is to inform the block model variables based on the spatial distribution of the modelled data. In general, kimberlite pipes are roughly ovoid in plan-view, and taper consistently at depth. Vulcan and Leapfrog software are used to develop 3D wireframe models of the second			es based on the imberlite pipes are depth.
	The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.	kimberlite pipes and inter Drillhole boundary interse define the outer boundary slightly beyond the lowes	ections and surfa 7. The lower limit	ce geophysical s of models are	typically extended

29

Criteria

JORC Code explanation

The assumptions made regarding recovery of by-products.

Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation).

In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.

Any assumptions behind modelling of selective mining units.

Any assumptions about correlation between variables.

Description of how the geological interpretation was used to control the resource estimates.

Discussion of basis for using or not using grade cutting or capping.

The process of validation, the checking process used, the comparison of model data to drillhole data, and use of reconciliation data if available.

Commentary

Internal domain boundaries are typically modelled as planar surfaces. Internal dilution (e.g. granitic xenoliths) is modelled as enclosed volumes assuming sub-rounded, sub-horizontal shapes or treated as a percent dilution of the model volume.

The geological models are refined and updated with mining development and production data.

Statistical and geostatistical analyses of grade, density, and moisture content are performed to characterize the distributions of these variables.

Contact analysis is used to support both hard and soft boundaries.

Data are reviewed for outliers, and outlying samples are treated depending on their genesis.

All data are de-surveyed to the midpoint of the sample.

Block models are built for Mineral Resource estimates (typically created in Vulcan) for kimberlite pipes that are deemed to have prospects of economic extraction. Block models are periodically updated as new data are collected (e.g. completion of a drill program, diamond parcel pricing) or as required for reporting and economic studies.

The table below summarises the block model size and modelling method for each kimberlite pipe. Ore Reserve and Mineral Resources for stockpiles are not included as these are not primary sources requiring block modelling.

Kimberlite Pipe	Model block size (m)	Modelling method
Fox	15 by 15 by 10	Simple kriging
Misery	15 by 15 by 10	Ordinary kriging
Sable	15 by 15 by 15	Simple kriging
Lynx	10 by 10 by 10	Ordinary kriging
Point Lake	10 by 10 by 10	Simple kriging
Phoenix	10 by 10 by 10	Simple kriging
Challenge	10 by 10 by 10	Simple kriging
Jay	15 by 15 by 15	Simple kriging

Criteria	JORC Code explanation	Commentary
		The block grade estimates were validated by visual checks of estimated block grades versus sample grades, summary statistics of estimated and declustered input grade distributions, histograms and probability plots, swath plots, scatterplots, and quantile-quantile (QQ) plots. No significant errors or biases were identified as a result of the validation process.
		No grade cutting is applied.
		Moisture content (%) and bulk density measurements vary across different domains within a kimberlite pipe(s).
		The Competent Person is confident that the process of Ore Reserve and Mineral Resource modelling has followed industry standards.
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Moisture content (%) measurements vary across different domains within a kimberlite pipe(s). Tonnages are estimated on a dry basis.
		The Competent Person is confident that accurate and precise measurement of moisture content used within the modelling process has been fulfilled and that the process of Ore Reserve and Mineral Resource modelling has followed industry standards.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	The Mineral Resource estimate is calculated using a lower cut-off size of 0.5 mm slotted de-grit screen and using a 1.0 mm cut-off circular aperture screen for final diamond recovery. The 0.5 mm slotted de-grit screens are used in the sample plant to maximize diamond recovery in the smaller sizes. The sample plant runs at a much lower throughput than the main plant and achieves higher overall diamond recovery.
		The Ore Reserve estimate is calculated using a lower cut-off size of 1.2 mm slotted de-grit screen with a 1.0 mm circular aperture screen for final diamond recovery.
		No grade cutting is applied.
		The Competent Person is confident that the cut-off parameters used for the Ore Reserve & Mineral Resource estimates have followed industry standards.

Criteria	JORC Code explanation	Commentary
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	Prefeasibility studies underpin the Ore Reserve estimates for the Sable (open pit), Point Lake (open pit), Misery Main (underground) and Fox (underground) pipes. Additionally, a 2016 National Instrument 43-101 report following Canadian Institute of Mining, Metallurgy and Petroleum (CIM) guidelines was completed. Details on the relevant mining factors or assumptions can be seen in the footer notes of Tables 1 and 2. The Competent Person is confident that all the Ore Reserve and Mineral Resource estimations and mining assumptions have followed industry standard procedures for determining the reasonable prospect for eventual economic extraction.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	Site specific metallurgical factors are well established through approximately 25 years of mine operation (more than 90 million carats have been recovered to date from the Ekati property). Metallurgical testwork and associated analytical procedures were performed by recognised testing facilities, and the tests performed were appropriate to the mineralisation type. Samples selected for testing were representative of the various kimberlite types and domains. Industry-standard studies were performed as part of process development and initial plant design. Subsequent production experience and focused investigations have guided plant expansions and process changes. Recovery estimates are based on appropriate metallurgical testwork and confirmed with production data and are appropriate for the various kimberlite domains. While there are no deleterious elements in diamonds processing, high granite or clay quantities can lead to process issues. These are managed by a combination of surface sorting and blending of different kimberlite domains.

Criteria	JORC Code explanation	Commentary
		The Competent Person is confident that the metallurgical factors and assumptions used as a part of determining reasonable prospects for eventual economic extraction are reasonable and follow standard industry practice.
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	Ekati Diamond Mine is predominantly regulated through an Environmental Agreement and permits with the following key agencies: Government of Northwest Territories (GNWT). Wek'èezhii Land and Water Board (WLWB). Fisheries and Oceans Canada (DFO). Ekati entered into an Environmental Agreement (January 1997) with the Government of Canada and the GNWT which provides environmental obligations in addition to those under applicable legislation. Key provisions include: Funding of an independent environmental monitoring agency to serve as a public watchdog. Submission of environmental reports and management plans (including reclamation plans). Provide security deposits and guarantee. The Environmental Agreement provides for the Independent Environmental Monitoring Agency and continues in effect until full and final reclamation of the Ekati Project site is completed. Compliance with environmental requirements and agreements is reported publicly by Ekati on an annual basis. Version 8.1 of the Waste Management Plan was approved by the WLWB in August 2022. The Waste Management Plan includes the following plans: Hydrocarbon Impacted Material Management Plan Solid Waste Landfill Management Plan. Hazardous Waste Management Plan. Incinerator Management Plan.

Criteria	JORC Code explanation	Commentary
		The Waste Management Plan also references the Waste Rock and Ore Storage Management Plan and the Wastewater and Processed Kimberlite Management Plan.
		Version 11.1 of the Waste Rock and Ore Storage Management Plan was approved by the WLWB in November 2022.
		Version 9.0 of the Wastewater and Processed Kimberlite Management Plan was approved by the WLWB in June 2019.
		All environmental permits are in place for Ekati's current operations, including the Point Lake kimberlite deposit.
		The Competent Person is confident that all environmental factors or assumptions in determining the reasonable prospect for eventual economic extraction have been satisfied.
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.	Dry bulk density estimates are determined for each kimberlite domain using a sufficient number of data points.
		Due to the low variance and large number of representative dry bulk density samples within a single kimberlite or domain, the variability in the density estimate is considered to be an insignificant risk component of Ore Reserve and Mineral Resource estimation.
	The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc.), moisture and differences between rock and alteration zones within the deposit.	The Competent Person is confident that accurate and representative measurement of dry bulk density used within the modelling process has been fulfilled and that the process of Ore Reserve and Mineral Resource modelling has followed industry standards.
	Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	
Classification	The basis for the classification of the Mineral Resources into varying confidence categories.	Drill spacing studies were conducted to support Mineral Resource confidence classification. Drillhole spacing classification is as follows for all deposits, unless otherwise specified:
		 Indicated – less than 60 m to nearest sample. Inferred – less than 90 m to nearest sample.

Criteria	JORC Code explanation	Commentary
	Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).	Mineral Resources take into account geological, mining, processing and economic constraints, and have been defined within a conceptual stope design or a conceptual open pit shell.
		Depletion has been included in the estimates.
		No Measured Mineral Resources are estimated.
Whether the result appropriately reflects the Competent Person's view of the deposit.	 Factors which may affect the Mineral Resource estimates include: Diamond book price and valuation assumptions. Changes to geological interpretations. Changes to the assumptions used to estimate the diamond carat content. Conceptual block cave and open pit design assumptions. Geotechnical, mining and process plant recovery assumptions. Diamond parcel sizes for the pipes with estimates that are not in production or planned for production. And the effect of different sample-support sizes between RC drilling and underground sampling. 	
		Ore Reserves take into consideration environmental factors, permitting, legal, title, taxation, socio-economic, marketing and political factors support the estimation of Ore Reserves.
		 Factors which may affect the Ore Reserve estimates include: Diamond price assumptions. Grade model assumptions. Underground mine design. Open pit mine design. Geotechnical, mining and process plant recovery assumptions. Practical control of dilution. Changes to capital and operating cost estimates. Variations to the permitting, operating or social licence regime assumptions, in particular if permitting parameters are modified by regulatory authorities during permit renewals.

Criteria	JORC Code explanation	Commentary
		The Ore Reserve and Mineral Resource classification (as listed in Tables 1 and 2), including drillhole spacing, appropriately reflects the Competent Person's view of the Ekati property deposits.
	The results of any audits or reviews of Mineral Resource estimates.	The sample plant adjacent to the processing plant building was routinely used for diamond recovery audits and for grade control as part of an Ore Reserve and Mineral Resource reconciliation process.
		The Competent Person has audited and reviewed on-site data including reviews of drilling programs and sample results used within the Ore Reserve and Mineral Resource estimate.
		Data verification is undertaken on geological, geotechnical, survey and bulk density data collected. Data are reviewed for accuracy by the Resource and/or Production Geologists and corrected as necessary.
		The findings of this data validation process are summarised and any modifications to the database are reviewed by appropriate staff prior to implementation of those changes. This includes data audit results from the SRC laboratory (used for sample processing in 2019).
		KPMG performs annual audits of the Ore Reserve and Mineral Resource process.
		The Competent Person believes a reasonable level of verification has been completed during the exploration and production phases, and no material issues would have been left unidentified from the verification programs undertaken.
		Moreover, the Competent Person is confident that the quality of the analytical data is reliable and sample preparation, analysis, and security are generally performed in accordance with diamond exploration best practices and industry standards.

Criteria JORC Code explanation

Discussion of relative accuracy/ confidence

Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.

The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.

These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.

Commentary

Factors that may affect the accuracy of the Mineral Resource estimate include:

- Diamond price and valuation assumptions.
- Changes to the assumptions used to estimate diamond carat content (e.g. bulk density estimation, grade model methodology).
- Geological interpretation (internal kimberlite domains and/or pipe contacts).
- Changes to design parameter assumptions that pertain to block cave designs.
- Changes to design parameter assumptions that pertain to open pit design.
- Changes to geotechnical, mining assumptions.
- Changes to process plant recovery estimates if the diamond size in certain domains is finer or coarser than currently assumed.
- The effect of different sample-support sizes between RC drilling and underground sampling or other larger-scale sampling programs.
- Diamond parcel sizes for the pipes with estimates that are not in production or planned for production.

Factors that may affect the accuracy of the Ore Reserve estimate include:

- Mineral Resource factors listed above.
- Appropriate dilution control being able to be maintained.
- Changes to capital and operating cost estimates, in particular to fuel cost assumptions
- Changes to royalty payment assumptions.
- Variations to the permitting, operating or social licence regime assumptions, in particular if permitting parameters are modified by regulatory authorities during permit renewals.

The Competent Person is confident that the Ore Reserve and Mineral Resource estimate achieves an acceptable level of accuracy using industry best practices, including robust geostatistical methods and regular reconciliation (grade, tonnage and geological modelling) from production data.

Section 4: Estimation and Reporting of Ore Reserves

(Criteria listed in section 1, and where relevant in sections 2 and 3, also apply to this section.)

Criteria	JORC Code explanation	Commentary				
Mineral Resource estimate for conversion to Ore Reserves	Description of the Mineral Resource estimate used as a basis for the conversion to an Ore Reserve. Clear statement as to whether the Mineral Resources are reported additional to, or inclusive of, the Ore Reserves.	Drill spacing studies were conducted to support Mineral Resource confidence classification. Drillhole spacing classification for all deposits, unless otherwise specified, being converted from Inferred to Indicated, must be less than 60 m to the nearest sample. All Mineral Resource reported are inclusive of Ore Reserves. More detail can be found within the footer notes of Tables 1 and 2.				
Site visits	Comment on any site visits undertaken by the Competent	Site visits are undert job function.	aken on a regular basis by tl	ne Competent Person as part of their normal		
	Person and the outcome of those visits.	No material issues have been identified by the Competent Person in relation to the Ore Reserve and Mineral Resource estimation.				
	If no site visits have been undertaken indicate why this is the case.					
Study status	The type and level of study undertaken to enable Mineral	All Mineral Resources converted to Ore Reserves have undergone prefeasibility and/or feasibility studies following CIM guidelines.				
	Resources to be converted to	The level of study for each kimberlite deposit is as follows:				
	Ore Reserves.	Kimberlite Pipe	Level of study (year published)			
		Fox Underground	Prefeasibility (2018)			
		Misery	Prefeasibility (2017)			
		Sable	Prefeasibility (2016)			
		Jay Point Lake	Feasibility (2016) Prefeasibility (2020)			
		·	son is confident that this leveneral Resources to Ore Rese	el of study meets industry best practices for erves.		

Criteria	JORC Code explanation	Commentary
	The Code requires that a study to at least Pre-Feasibility Study level has been undertaken to convert Mineral Resources to Ore Reserves. Such studies will have been carried out and will have determined a mine plan that is technically achievable and economically viable, and that material Modifying Factors have been considered.	
Cut-off parameters	The basis of the cut-off grade(s) or quality parameters applied.	The Ore Reserve lower cut-off size is 1.2 mm (slotted de-grit screen using a 1.0 mm cut-off circular aperture screen for final diamond recovery), and the Mineral Resource lower cut-off size is 0.5 mm (slotted de-grit screen) using a 1.0 mm cut-off circular aperture screen for final diamond recovery, as listed in Tables 1 and 2. The diamond recovery factor varies by pipe and in some instance by kimberlite phase. Diamond quality assessment is based on exploration parcels and production trial parcels if available. The Competent Person considers the cut-off grade and quality parameters applied to be
		appropriate.
Mining factors or assumptions	The method and assumptions used as reported in the Prefeasibility or Feasibility Study to convert the Mineral Resource to an Ore Reserve	Several prefeasibility studies along with a 2016 National Instrument 43 -101 report following CIM guidelines, have been completed for each reported Ore Reserve estimate stated in as listed in Tables 1 and 2 in the body of this News Release. Details on the mining factors and assumptions can be found in the footer notes of Tables 1
	(i.e. either by application of appropriate factors by	and 2. The Competent Person is confident that all the Ore Reserve and Mineral Resource estimations and mining assumptions have followed industry standard procedures for
	optimisation or by preliminary or detailed design).	determining the reasonable prospect for eventual economic extraction.

Criteria	JORC Code explanation	Commentary
	The choice, nature and appropriateness of the selected mining method(s) and other mining parameters including associated design issues such as pre-strip, access, etc.	
	The assumptions made regarding geotechnical parameters (e.g. pit slopes, stope sizes, etc.), grade control and pre-production drilling.	
	The major assumptions made and Mineral Resource model used for pit and stope optimisation (if appropriate).	
	The mining dilution factors used.	
	The mining recovery factors used.	
	Any minimum mining widths used.	
	The manner in which Inferred Mineral Resources are utilised in mining studies and the sensitivity of the outcome to their inclusion.	
	The infrastructure requirements of the selected mining methods.	

Criteria	JORC Code explanation	Commentary
Metallurgical factors or	The metallurgical process proposed and the	Site-specific metallurgical factors are known due to the operation of the main process plant facility for 25 years.
assumptions	appropriateness of that process to the style of mineralisation.	Metallurgical testwork and associated analytical procedures were performed by recognised testing facilities, and the tests performed were appropriate to the mineralisation type.
		Samples selected for testing were representative of the various kimberlite types and domains.
	Whether the metallurgical process is well-tested technology or novel in nature.	Industry-standard studies were performed as part of process development and initial on-site bulk sample plant design.
	The nature, amount and representativeness of metallurgical testwork	Subsequent production experience and focused investigations have guided plant expansions and process changes. Recovery estimates are based on appropriate metallurgical testwork and confirmed with production data and are appropriate for the various kimberlite domains.
	undertaken, the nature of the metallurgical domaining applied and the corresponding metallurgical recovery factors applied.	While there are no deleterious elements in diamonds processing, high granite or clay quantities can lead to process issues. These are managed by a combination of surface sorting and blending of different kimberlite domains.
	Any assumptions or allowances made for deleterious elements.	
	The existence of any bulk sample or pilot-scale testwork and the degree to which such samples are considered representative of the orebody as a whole.	
	For minerals that are defined by a specification, has the Ore Reserve estimation been based on the appropriate mineralogy to meet the specifications?	

Criteria	JORC Code explanation	Commentary
Environmental	The status of studies of potential environmental	The Ekati Project operates under an Environmental Agreement with the Government of Canada and the GNWT that was concluded in 1997.
	impacts of the mining and processing operation. Details of waste rock characterisation	The agreement is binding over the life-of-mine until full and final reclamation has been completed.
	and the consideration of potential sites, status of design	The Environmental Agreement provides for an Independent Environmental Monitoring Agency which acts as an independent reviewer representing the public interest.
	options considered and, where applicable, the status of approvals for process residue storage and waste dumps	A number of environmental monitoring programs are in place, and include ongoing assessments of water quality, aquatic effects, fish habitat compensation measures, site reclamation projects, waste rock storage area seepage, wildlife effects, air quality, and geotechnical stability of engineered structures.
	should be reported.	Compliance with environmental requirements and agreements is reported publicly on an annual basis through the Water Licence, Environmental Agreement, Fisheries Act Authorisations and other means.
		The current and expected environmental impact of the operation is well identified and subsequent closure, remediation and monitoring requirements have been sufficiently studied and budgeted for in the opinion of the responsible Competent Person.
Infrastructure The existence of appropriate infrastructure: availability of land for plant development, power, water, transportation (particularly for bulk		Ekati is an operating mine and key infrastructure on site includes the open pits, underground mines, sample and process plants, waste rock storage and processed kimberlite storage facilities, buildings, and accommodation (mobile and permanent), pipelines, pump stations, electrical systems, quarry site, camp pads and laydowns, ore storage pads, roads, culverts and bridges, airstrip, helipad, and mobile equipment.
	commodities), labour, accommodation; or the ease with which the infrastructure can be provided, or accessed.	The existing and planned infrastructure, availability of staff, the existing power, water, and communications facilities, the methods whereby goods are transported to the mine, and any planned modifications or supporting studies are sufficiently well established, or the requirements to establish such, are well understood by Ekati management and can support the estimation of Mineral Resources and Ore Reserves, in addition to the mine plan.
		In the opinion of the Competent Person, the current on-site and enabling infrastructure is appropriate to enable Ekati's mining and processing activities to continue as proposed in the life-of-mine plan.

Criteria	JORC Code explanation	Commentary
Costs	ts The derivation of, or assumptions made, regarding projected capital costs in the study. The methodology used to estimate operating costs. Allowances made for the content of deleterious elements. The source of exchange rates	The derivation and methodology of the capital cost assumptions have followed industry standard (CIM) practices, which have been completed during prefeasibility and feasibility studies. These studies have made allowances for all royalties, capital cost developments, environmental and rehabilitation/closure costs, and operating costs. The Ekati Diamond Mine has been in production for 25 years.
		Given the robust understanding of all project costs (capital and operating), the Competent Person is confident all assumptions used for economic analysis of the project are reasonable. The Competent Person cautions that projected costs since the date of the relevant study completion may vary.
	used in the study. Derivation of transportation charges.	
	The basis for forecasting or source of treatment and refining charges, penalties for failure to meet specification, etc.	
	The allowances made for royalties payable, both Government and private.	
Revenue factors	,	The derivation and methodology of revenue assumptions have followed industry standard (CIM) practices, which have been completed during prefeasibility and feasibility studies. The US\$/ct for each kimberlite pipe has been derived from a sufficient number of carats (production parcels and/or exploration parcels) for each pipe's level of Ore Reserve and Mineral Resource classification – see <i>Value Estimation</i> table in Section 5 – taking into account price/market sensitivity at the time of the study completion.
		The Competent Person is confident all assumptions used for revenue determination for the project are reasonable. The Competent Person cautions that projected revenue determined since the date of the relevant study completion may vary.

Criteria	JORC Code explanation	Commentary	,					
	The derivation of assumptions made of metal or commodity price(s), for the principal metals, minerals and coproducts.							
Market	The demand, supply and stock	No forward m	narket for r	ough diamo	onds exists to provi	de external l	ong-term pric	cing trends.
assessment	situation for the particular commodity, consumption trends and factors likely to				ne lack of homoger g the diamonds.	neity in qualit	y and absend	ce of agreed
	affect supply and demand into the future.	Consequently supply and d	, .	I price fored	asts are depender	nt upon the fu	undamental v	iews of future
	A customer and competitor analysis along with the identification of likely market	financial insti Analytics, Mo	Various independent diamond market forecasts are produced by specialist companies, financial institutions, and respected major consulting firms, such as Paul Zimnisky Diamond Analytics, McKinsey & Company and Bain & Company.					
	windows for the product.	The Competent Person is confident the market assessment for pricing diamond revenues for Ekati follows industry best practices.						d revenues for
	Price and volume forecasts and the basis for these forecasts.	EKATI TOIIOWS	industry be	est practice:	S.			
	For industrial minerals the customer specification, testing and acceptance requirements prior to a supply contract.							
Economic	The inputs to the economic	Kimberlite	mberlite Study Discount Sensitivity		Sensitivity	After-tax NPV (US\$ millions)		
Loonomio	analysis to produce the net		level	rate		Low	Base	High
	present value (NPV) in the	Sable*	PFS	7%	Price growth	37.4	137.1	185.4
	study, the source and		(2016)		Diamond price	44.4	137.1	226.3
	confidence of these economic				Initial capital	117.4	137.1	151.6
	inputs including estimated				Operating costs	84.5	137.1	161.6
	inflation, discount rate, etc.				Grade	-	-	-
	NPV ranges and sensitivity to	Jay	FS	7%	Price growth	(27.2)	398.00	607.6
	variations in the significant		(2016)		Diamond price	161.9	398.00	637.3
	assumptions and inputs.				Capital costs	316.9	398.00	483.4
	,				Operating costs	230.8	398.00	483.4

Criteria	JORC Code explanation	Commentary						
					Grade	-	398.00	-
		Misery	PFS	7%	Price growth	71.0	92.0	101.0
		(UG)	(2017)		Diamond price	83.0	92.0	100.0
					Initial capital	75.0	92.0	103.0
					Operating costs	76.0	92.0	99.0
					Grade	65.0	92.0	118.0
		Fox Deep	PFS	7%	Price growth	(141.4)	75.0	212.0
			(2018)		Diamond price	(69.0)	75.0	219.9
					Total capital	27.8	75.0	123.1
					Operating costs	46.7	75.0	103.4
					Grade	17.2	75.0	132.9
		Point Lake	PFS	7%	Price growth	(25.7)	2.3	24.5
			(2020)		Diamond price	(37.6)	2.3	39.7
					Total capital	0.6	2.3	4.3
					Operating costs	(12.5)	2.3	10.2
					Grade	-	-	-
		 All NPV f. Sensitivit initial cap No grade grade NF Misery M Stockpile 	efeasibility igures hav y (Low, Ba pital, opera e sensitivity PV mirrors lain's NPV	Study; FS we not accounts we not accounts withing costs of which analysis has withe Diamount withing costs withing withing costs withing costs withing costs withing costs withing withing costs withing costs withing costs withing within withing within withing within within within within within with	= Feasibility Study. unted for depletion analysis includes val and grade. has been performed and Price NPV. ve been rounded.	riable price g for Sable, Ja	rowth, diamo	
Social	The status of agreements with key stakeholders and matters leading to social licence to operate.	Ekati currently holds the appropriate social licenses to operate. A Socio-Economic Agreement was concluded with the GNWT and has been in place since 1996. Four Impact and Benefit Agreements (IBAs) have also been concluded; current relationships with each of the IBA groups are considered positive and are maintained through regular meetings and communications.				t relationships		

Criteria	JORC Code explanation	Commentary
		The Ekati Mine currently provides financial support for projects that support the development of long-term sustainable community initiatives.
		The Ekati Mine also tries to incorporate the use of traditional knowledge in monitoring programs by involving communities in the programs and teaching the environmental staff the traditional way of the land.
Other	To the extent relevant, the impact of the following on the project and/or on the estimation and classification of the Ore Reserves: • Any identified material naturally occurring risks. • The status of material legal agreements and marketing arrangements.	At the time of this News Release, the Competent Person is unaware of any impediments to operating in the Ekati project area.

Criteria	JORC Code explanation	Commentary
	The status of governmental agreements and approvals critical to the viability of the project, such as mineral tenement status, and government and statutory approvals. There must be reasonable grounds to expect that all necessary Government approvals will be received within the timeframes anticipated in the prefeasibility or feasibility study. Highlight and discuss the materiality of any unresolved matter that is dependent on a third party on which extraction of the reserve is contingent.	
Classification	The basis for the classification of the Ore Reserves into varying confidence categories. Whether the result appropriately reflects the Competent Person's view of the deposit. The proportion of Probable Ore Reserves that have been derived from Measured Mineral Resources (if any).	Drill spacing studies were conducted to support Mineral Resource confidence classification. Drillhole spacing classification is as follows for all deposits, unless otherwise specified: Indicated – less than 60 m to nearest sample. Inferred – less than 90 m to nearest sample. Mineral Resources take into account geological, mining, processing and economic constraints, and have been defined within a conceptual stope design or a conceptual open pit shell. Depletion has been included in the estimates. No Measured Mineral Resources are estimated. Factors which may affect the Mineral Resource estimates include: diamond book price and valuation assumptions; changes to geological interpretations; changes to the assumptions used to estimate the diamond carat content; conceptual block cave and open pit design assumptions; geotechnical, mining and process plant recovery assumptions; diamond parcel sizes for the pipes with estimates that are not in production or planned for production; and the effect of different sample-support sizes between RC drilling and underground sampling.

Criteria	JORC Code explanation	Commentary
		Ore Reserves take into consideration environmental factors, permitting, legal, title, taxation, socio-economic, marketing and political factors support the estimation of Ore Reserves. Factors which may affect the Ore Reserve estimates include diamond price assumptions; grade model assumptions, underground mine design, open pit mine design, geotechnical, mining and process plant recovery assumptions, practical control of dilution, changes to capital and operating cost estimates and variations to the permitting, operating or social license regime assumptions, in particular if permitting parameters are modified by regulatory authorities during permit renewals.
		The Ore Reserve and Mineral Resource classification (as listed in Tables 1 and 2 appropriately reflects the Competent Person's view of the Ekati property's deposits.
Audits or reviews	The results of any audits or reviews of Ore Reserve estimates.	The sample plant adjacent to the processing plant building was routinely used for diamond recovery audits and for grade control until 2012 as part of an Ore Reserve and Mineral Resource reconciliation process.
		A fines diamond recovery circuit (FDMS) was added in 2014 and is used to incrementally process coarse process plant tails.
		The Competent Person has audited and reviewed on-site data including reviews of exploration programs and sample results used within the Mineral Resource and Ore Reserve estimate.
		Data verification is undertaken on geological, geotechnical, survey and bulk density data collected.
		Data are reviewed for accuracy by the Resource and/or Production Geologists and corrected as necessary.
		The findings of this data validation process are summarised and any modifications to the database are reviewed by appropriate staff prior to implementation of those changes.
		This includes data audit results from the SRC laboratory (used for sample processing from 2019).
		KPMG performs annual audits of the Ore Reserve and Mineral Resource process.
		The Competent Person believes a reasonable level of verification has been completed during the exploration and production phases, and no material issues would have been left unidentified from the verification programs undertaken.

Criteria	JORC Code explanation	Commentary
		Moreover, the Competent Person is confident that the quality of the analytical data is reliable and sample preparation, analysis, and security are generally performed in accordance with diamond exploration best practices and industry standards.
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Ore Reserve estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the reserve within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors which could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	 Factors that may affect the accuracy of the Mineral Resource estimate include: Diamond price and valuation assumptions. Changes to the assumptions used to estimate diamond carat content (e.g. bulk density estimation, grade model methodology). Geological interpretation (internal kimberlite domains and/or pipe contacts). Changes to design parameter assumptions that pertain to block cave designs. Changes to geotechnical, mining assumptions. Changes to process plant recovery estimates if the diamond size in certain domains is finer or coarser than currently assumed. The effect of different sample-support sizes between RC drilling and underground sampling or other larger-scale sampling programs. Diamond parcel sizes for the pipes with estimates that are not in production or planned for production. Factors that may affect the accuracy of the Ore Reserve estimate include: Mineral Resource factors listed above. Appropriate dilution control being able to be maintained. Changes to capital and operating cost estimates, in particular to fuel cost assumptions. Changes to royalty payment assumptions. Variations to the permitting, operating or social licence regime assumptions, in particular if permitting parameters are modified by regulatory authorities during permit renewals. The Competent Person is confident that the Ore Reserve and Mineral Resource estimate achieves an acceptable level of accuracy using industry best practices, including robust geostatistical analysis and regular reconciliation (grade, tonnage and geological modelling) from production data.

Criteria	JORC Code explanation	Commentary
	Accuracy and confidence discussions should extend to specific discussions of any applied Modifying Factors that may have a material impact on Ore Reserve viability, or for which there are remaining areas of uncertainty at the current study stage.	
	It is recognised that this may not be possible or appropriate in all circumstances. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	

Section 5: Estimation and Reporting of Diamonds and Other Gemstones

(Criteria listed in other relevant sections also apply to this section. Additional guidelines are available in the 'Guidelines for the Reporting of Diamond Exploration Results' issued by the Diamond Exploration Best Practices Committee established by the Canadian Institute of Mining, Metallurgy and Petroleum.)

Criteria	JORC Code explanation	Commentary
Indicator minerals	Reports of indicator minerals, such as chemically/physically distinctive garnet, ilmenite, chrome spinel and chrome diopside, should be prepared by a suitably qualified laboratory.	Not applicable – indicator grains are not relevant to diamond Ore Reserve and Mineral Resource estimates.
Source of diamonds	Details of the form, shape, size and colour of the diamonds and the nature of the source of diamonds (primary or secondary) including	Diamond recovered from the Ekati Mine are sourced from primary, hard-rock kimberlite deposits.
	the rock type and geological environment.	Not applicable – exploration results are not being reported. The Ekati Diamond Mine has produced approximately 90 million carats.

Criteria	JORC Code explanation	Commentary
Sample collection	Type of sample, whether outcrop, boulders, drill core, reverse circulation drill cuttings, gravel, stream sediment or soil, and purpose	Sample collection used to estimate the Ore Reserve and Mineral Resource statements include various drilling techniques to define the volume, tonnage, and diamond content.
	(e.g. large diameter drilling to establish stones per unit of volume or bulk samples to establish stone size distribution).	Extensive open pit and underground mining processing data also contribute to the Ore Reserve and Mineral Resource estimate.
	Sample size, distribution and representivity.	The Competent Person considers the sample size, distribution and representivity of sample data to be appropriate.
Sample treatment	Type of facility, treatment rate, and accreditation.	Sample and production material is processed through on-site dense media separation (DMS) plants (production and sampling).
	Sample size reduction. Bottom screen size, top screen size and re-crush.	The recovery process involves DMS, grease recovery, x-ray sorting of the dense media concentrate and hand sorting of the x-ray and grease concentrates.
	Processes (dense media separation, grease, X-ray, hand-sorting, etc.).	The on-site plants are not accredited; however, auditing is performed regularly,
	Process efficiency, tailings auditing and granulometry.	following the industry standard protocols typical for an active diamond producer.
	Laboratory used, type of process for micro diamonds and accreditation.	The sampling plant rate is approximately 10 tonnes per hour (tph), whilst the production plant rate is approximately 400-600 tph.
		The production plant has a DMS 1.2 mm de-grit slotted screen (final recovery using a 1.0 mm cut-off circular aperture screen), a DMS top screen cut-off size of 28 mm (square screen), and a re-crush size of -25+10 mm. Routine quality control, in line with diamond value management (DVM) principles, is undertaken by laboratory staff to ensure maximum efficiencies.
		Given the Ekati mine is in production, the Competent Person considers microdiamonds and other early-stage evaluation laboratory analysis non-material.
Carat	One fifth (0.2) of a gram (often defined as a metric carat or MC).	Reported as carats.
Sample grade	Sample grade in this section of Table 1 is used in the context of carats per units of	Grade measured from sampled and production data is calculated from diamond recovery per metric tonne (dry) recovered.
	mass, area or volume.	This is often reported in carats per hundred tonne (cpht).

Criteria	JORC Code explanation	Commentary
	The sample grade above the specified lower cut-off sieve size should be reported as carats per dry metric tonne and/or carats per 100 dry metric tonnes. For alluvial deposits, sample grades quoted in carats per square metre or carats per cubic metre are acceptable if accompanied by a volume to weight basis for calculation.	In the case of sample grade, this is derived from stones per tonne (stone frequency) and carats per stone (stone size). The grade reported in the Ore Reserve and Mineral Resource statement is calculated using a bottom cut-off size of 1.2 mm (slotted de-grit screen with final recovery using a 1.0 mm cut-off circular aperture screen) and 0.5 mm (slotted de-grit screen with final recovery using a 1.0 mm cut-off circular aperture screen) respectively (see Tables 1 and 2)
	In addition to general requirements to assess volume and density there is a need to relate stone frequency (stones per cubic metre or tonne) to stone size (carats per stone) to derive sample grade (carats per tonne).	
Reporting of Exploration Results	Complete set of sieve data using a standard progression of sieve sizes per facies. Bulk sampling results, global sample grade per facies. Spatial structure analysis and grade distribution. Stone size and number distribution. Sample head feed and tailings particle granulometry.	Not applicable – Exploration Results are not being reported.
	Sample density determination.	
	Per cent concentrate and undersize per sample.	
	Sample grade with change in bottom cut-off screen size.	
	Adjustments made to size distribution for sample plant performance and performance on a commercial scale.	
	If appropriate or employed, geostatistical techniques applied to model stone size, distribution or frequency from size distribution of exploration diamond samples.	

Criteria	JORC Code explanation	Commentary
	The weight of diamonds may only be omitted from the report when the diamonds are considered too small to be of commercial significance. This lower cut-off size should be stated.	
Grade estimation for reporting Mineral Resources and Ore Reserves	Description of the sample type and the spatial arrangement of drilling or sampling designed for grade estimation. The sample crush size and its relationship to that achievable in a commercial treatment plant. Total number of diamonds greater than the specified and reported lower cut-off sieve size. Total weight of diamonds greater than the specified and reported lower cut-off sieve size. The sample grade above the specified lower cut-off sieve size.	 Mineral Resources RC sampling programs provide diamond grade and size frequency distribution data for grade estimation. The diamond grade estimation variable is stones per metre cubed (spm³). The spm³ is calculated from a subset of stones over a representative set of size fractions chosen to obviate the effects of poor recovery of small stones and variability in recovery of large stones (i.e. stone density method). Ore Reserves The majority of data used in the Ore Reserve estimation is derived from mining production recoveries. The grade used for Ore Reserve reporting is specified to a lower cut-off size of 1.2 mm (de-grit slotted screen lower cut-off size with a final recovery using a 1.0 mm cut-off circular aperture screen). The Ore Reserve and Mineral Resource grade estimations in Tables 1 and 2 in the opinion of the Competent Person, meet industry standard procedures, including robust size frequency distribution analysis other geostatistical methods for the purpose of accurate grade reporting.
Value estimation	Valuations should not be reported for samples of diamonds processed using total liberation method, which is commonly used for processing exploration samples. To the extent that such information is not deemed commercially sensitive, Public Reports should include: diamonds quantities by appropriate screen size per facies or depth. Details of parcel valued.	Diamond breakage is considered by the Competent Person to not have a material effect on the value of Ekati diamonds over a production period. Given the production status of many of the Ekati kimberlite pipes, the parcel carat size used for the determination of the US\$/carat is large (see table below). Ore Reserves are calculated using a 1.2 mm (de-grit slotted screen) lower cutoff size with a final recovery using a 1.0 mm cut-off (circular aperture screen), whereas Mineral Resources are calculated using a 0.5 mm (de-grit slotted screen) lower cut-off size.

Criteria	JORC Code explanation	Commentary				
	Number of stones, carats, lower size cut-off per facies or depth.	Kimberlite Pipe	Parcel carats	US\$/ct	US\$/t	
	The average \$/carat and \$/tonne value at the	Ore Reserves				
	selected bottom cut-off should be reported in	Sable	97,820	103.48	72.44	
	US Dollars. The value per carat is of critical	Point Lake	1,280	80.71	48.43	-
	importance in demonstrating project value.	Misery Main	248,943	84.74	279.64	
	The basis for the price (e.g. dealer buying	Fox	2,603	265.94	79.78	-
	price, dealer selling price, etc.).	Mineral Resources				-
	An assessment of diamond breakage.	Sable	97,820	91.06	81.96	
		Point Lake	1,280	75.87	60.69	
		Phoenix	372	39.95		
		Challenge	390	32.58		_
		Leslie	215	83.00		-
		Misery Main Fox	248,943	72.88		_
		Jay	4,137	47.36		-
		Lynx	288,196	141.58		_
		The Competent Person is confident that the parcel valuation size for each kimberlite pipe is appropriate for the corresponding Ore Reserve and Resource classification.				
Security and integrity	Accredited process audit. Whether samples were sealed after	KPMG performs annu process.	ual audits of t	he Ore Rese	3.48 72.44 .71 48.43 .74 279.64 5.94 79.78 .06 81.96 .87 60.69 .95 55.93 .58 42.35 .00 24.90 .88 393.53 9.35 95.74 .36 89.98 1.58 113.27 t the parcel valuation rresponding Ore Reserve and Mineral Resource estimates of the Yellowknife Mineral Resource estimates (e.g. tracer monitors)	ral Resource
	excavation. Valuer location, escort, delivery, cleaning	The Ekati Diamond Mine has diamond sorting and sales facilities in Yellowknife (Northwest Territories) and Antwerp (Belgium).				
	losses, reconciliation with recorded sample carats and number of stones.	Diamond concentrates (x-ray and grease) are weighed and securely packaged on site and then transported via air freight to the Yellowknife sorting and				
	Core samples washed prior to treatment for micro diamonds.	valuation facility. Reconciliation of the Ore Reserve and Mineral Resource estimate from				
	Audit samples treated at alternative facility.	production data is performed regularly.				
	Results of tailings checks.	The details of many o described in previous				

Criteria	JORC Code explanation	Commentary
	Recovery of tracer monitors used in sampling and treatment.	The Competent Person is of the opinion that industry standard practices have been met, including data quality/control and auditing.
	Geophysical (logged) density and particle density.	
	Cross validation of sample weights, wet and dry, with hole volume and density, moisture factor.	
Classification	In addition to general requirements to assess volume and density there is a need to relate stone frequency (stones per cubic metre or tonne) to stone size (carats per stone) to derive grade (carats per tonne). The elements of uncertainty in these estimates should be considered, and classification developed accordingly.	The Ore Reserve and Mineral Resource grade estimations in Tables 1 and 2 have, in the opinion, of the Competent Person, met industry standard procedures, including robust size frequency distribution analysis and other geostatistical methods for the purpose of accurate grade and diamond valuation reporting.

Appendix 2

Ekati Mineral Leases

Lease No.	Area (Km²)	Area (Ha)	Issue Date	Expiry Date
3473	10.48	1048.30	1996-Apr-10	2038-Apr-09
3474	9.60	959.50	1996-Apr-10	2038-Apr-09
3475	9.80	979.80	1996-Apr-10	2038-Apr-09
3476	10.01	1001.00	1996-Apr-10	2038-Apr-09
3477	10.53	1052.50	1996-Apr-10	2038-Apr-09
3478	9.48	947.90	1996-Apr-10	2038-Apr-09
3479	9.61	960.60	1996-Apr-10	2038-Apr-09
3480	10.20	1020.00	1996-Apr-10	2038-Apr-09
3481	9.77	977.10	1996-Apr-10	2038-Apr-09
3482	9.96	996.30	1996-Apr-10	2038-Apr-09
3483	9.79	978.50	1996-Apr-10	2038-Apr-09
3484	10.01	1001.20	1996-Apr-10	2038-Apr-09
3485	10.05	1004.80	1996-Apr-10	2038-Apr-09
3486	10.22	1021.70	1996-Apr-10	2038-Apr-09
3487	5.81	580.50	1996-Apr-10	2038-Apr-09
3488	10.32	1031.90	1996-Apr-10	2038-Apr-09
3489	10.19	1019.30	1996-Apr-10	2038-Apr-09
3490	9.79	979.00	1996-Apr-10	2038-Apr-09
3491	10.30	1029.80	1996-Apr-10	2038-Apr-09
3492	9.80	979.60	1996-Apr-10	2038-Apr-09
3493	10.58	1058.20	1996-Apr-10	2038-Apr-09
3494	9.92	992.30	1996-Apr-10	2038-Apr-09
3495	9.97	996.90	1996-Apr-10	2038-Apr-09
3496	10.09	1009.40	1996-Apr-10	2038-Apr-09
3497	10.18	1017.70	1996-Apr-10	2038-Apr-09
3498	10.51	1051.40	1996-Apr-10	2038-Apr-09
3499	9.36	935.60	1996-Apr-10	2038-Apr-09
3500	9.55	954.80	1996-Apr-10	2038-Apr-09
3501	10.16	1016.00	1996-Apr-10	2038-Apr-09
3502	10.13	1012.70	1996-Apr-10	2038-Apr-09
3503	4.23	422.70	1996-Apr-10	2038-Apr-09

Lease	Area	Area (Ha)	Issue Date	Expiry Date
No.	(Km²)	Агеа (па)	issue Date	Expiry Date
3504	6.78	678.40	1996-Apr-10	2038-Apr-09
3505	10.16	1015.70	1996-Apr-10	2038-Apr-09
3506	5.20	519.80	1996-Apr-10	2038-Apr-09
3507	4.46	446.00	1996-Apr-10	2038-Apr-09
3508	3.25	325.00	1996-Apr-10	2038-Apr-09
3509	9.55	955.30	1996-Apr-10	2038-Apr-09
3510	10.69	1069.00	1996-Apr-10	2038-Apr-09
3511	9.70	969.60	1996-Apr-10	2038-Apr-09
3512	10.92	1092.10	1996-Apr-10	2038-Apr-09
3513	9.76	975.60	1996-Apr-10	2038-Apr-09
3514	10.27	1027.00	1996-Apr-10	2038-Apr-09
3515	6.32	632.30	1996-Apr-10	2038-Apr-09
3516	6.66	666.46	1996-Apr-10	2038-Apr-09
3517	4.45	445.30	1996-Apr-10	2038-Apr-09
3518	10.15	1015.30	1996-Apr-10	2038-Apr-09
3519	9.64	964.40	1996-Apr-10	2038-Apr-09
3520	9.95	995.40	1996-Apr-10	2038-Apr-09
3521	10.11	1011.20	1996-Apr-10	2038-Apr-09
3522	9.59	959.30	1996-Apr-10	2038-Apr-09
3589	9.81	980.80	1997-Jun-26	2039-Jun-25
3590	9.73	973.10	1997-Jun-26	2039-Jun-25
3591	10.12	1011.90	1997-Jun-26	2039-Jun-25
3592	9.63	963.00	1997-Jun-26	2039-Jun-25
3593	10.49	1048.80	1997-Jun-26	2039-Jun-25
3594	9.93	992.50	1997-Jun-26	2039-Jun-25
3595	9.72	972.40	1997-Jun-26	2039-Jun-25
3596	10.24	1024.30	1997-Jun-26	2039-Jun-25
3597	9.91	991.10	1997-Jun-26	2039-Jun-25
3803	9.50	949.60	1999-Nov-05	2041-Nov-04
3804	10.80	1080.30	1999-Nov-05	2041-Nov-04

Lease No.	Area (Km²)	Area (Ha)	Issue Date	Expiry Date
3805	9.72	972.10	1999-Nov-05	2041-Nov-04
3807	10.20	1020.00	1999-Nov-17	2041-Nov-16
3812	9.62	962.20	1999-Nov-17	2041-Nov-16
3813	10.41	1040.90	1999-Nov-17	2041-Nov-16
3818	9.93	992.50	1999-Nov-17	2041-Nov-16
3824	9.49	948.50	1999-Nov-17	2041-Nov-16
3825	9.92	992.20	1999-Nov-17	2041-Nov-16
3848	10.44	1043.80	1999-Aug-16	2041-Aug-15
3854	9.89	988.90	1999-Nov-05	2041-Nov-04
3855	9.93	993.40	1999-Nov-05	2041-Nov-04
3856	10.53	1052.50	1999-Nov-05	2041-Nov-04
3857	10.24	1023.70	1999-Nov-17	2041-Nov-16
3858	10.05	1004.70	1999-Nov-17	2041-Nov-16
3859	9.95	994.70	1999-Nov-17	2041-Nov-16
3860	10.40	1040.10	1999-Nov-17	2041-Nov-16
3861	9.44	943.80	1999-Nov-17	2041-Nov-16
3862	10.06	1006.30	1999-Nov-17	2041-Nov-16
3863	10.21	1020.90	1999-Nov-17	2041-Nov-16
3864	9.59	958.90	1999-Nov-17	2041-Nov-16
3865	10.70	1069.80	1999-Nov-17	2041-Nov-16
3866	9.84	983.90	1999-Nov-17	2041-Nov-16
3867	9.89	989.00	1999-Nov-17	2041-Nov-16
3868	10.26	1026.10	1999-Nov-17	2041-Nov-16
3869	9.53	952.60	1999-Nov-17	2041-Nov-16
3870	10.12	1011.80	1999-Nov-17	2041-Nov-16
3871	9.99	998.70	1999-Nov-17	2041-Nov-16
3872	9.54	953.80	1999-Nov-17	2041-Nov-16
3873	9.67	966.50	1999-Nov-17	2041-Nov-16
3874	10.13	1013.30	1999-Nov-17	2041-Nov-16
3875	9.82	982.20	1999-Nov-17	2041-Nov-16

Lease No.	Area (Km²)	Area (Ha)	Issue Date	Expiry Date
3876	9.71	970.50	1999-Nov-17	2041-Nov-16
3877	10.23	1023.40	1999-Nov-17	2041-Nov-16
3906	10.29	1029.10	2000-Jun-02	2042-Jun-01
3907	9.86	986.20	2000-Jun-02	2042-Jun-01
3940	9.37	936.90	2000-Jun-02	2042-Jun-01
3953	10.47	1046.90	2000-Jun-02	2042-Jun-01
3959	10.08	1008.10	2000-Jun-02	2042-Jun-01
3975	8.82	881.80	2001-Jul-27	2043-Jul-26
3976	9.07	907.10	2001-Jul-27	2043-Jul-26
3977	10.27	1027.00	2001-Nov-01	2043-Oct-31
3979	9.69	968.90	2001-Jul-27	2043-Jul-26
3980	9.87	986.90	2001 Nov 01	2043-Oct-31
3986	8.08	807.50	2001 Jul 27	2043-Jul-26
3989	6.08	608.20	2001 Jul 27	2043-Jul-26
3990	6.47	646.90	2001 Jul 27	2043-Jul-26
4024	6.41	640.90	2001 Nov 01	2043-Oct-31
4025	9.51	951.20	2001 Nov 01	2043-Oct-31
4029	9.61	961.00	2001 Jul 27	2043-Jul-26
4030	10.59	1059.30	2001 Jul 27	2043-Jul-26
4033	9.53	953.10	2001 Nov 01	2043-Oct-31
4034	9.79	978.90	2001 Nov 01	2043-Oct-31
4035	9.85	984.60	2001 Nov 01	2043-Oct-31
4036	7.08	708.10	2001 Jul 27	2043-Jul-26
4037	10.43	1043.00	2001 Jul 27	2043-Jul-26
4038	11.61	1161.10	2001 Jul 27	2043-Jul-26
4362	5.89	588.50	2001 Nov 16	2043-Nov-15
4363	6.67	667.00	2001 Nov 16	2043-Nov-15
4364	6.25	625.10	2001 Nov 16	2043-Nov-15
4365	6.29	629.40	2001 Nov 16	2043-Nov-15
4372	9.47	946.60	2001 Nov 16	2043-Nov-15

