

ASX RELEASE 29 April 2024

Tiris extensional drill programme completed

KEY POINTS:

- The Tiris Uranium Project, Mauritania, is a near-term, low-cost, long-life future uranium mine with potential to produce 2Mlbspa U₃O₈ over the currently defined 17-year mine life
- The recent Front End Engineering Design ("FEED") study clearly demonstrated the Project's excellent economics (NPV₈ US\$388M and IRR 36% after tax)^{1,2}
- Recently completed 15,263m drill programme was designed to test the highly prospective resource growth potential
- Now that drilling has been completed, an update to the Mineral Resources has commenced and will be released during the June quarter

Drilling has defined two significant new areas³ of shallow and high-grade mineralisation at Hippolyte South and Sadi, as well as extensions to numerous other previously defined mineralised areas over the Tiris Project area.

- **Hippolyte South:** High-grade shallow mineralisation over 8km strike length that remains open in serval directions.
- Sadi: Mineralisation extended over 2km further south from the existing 9km mineralised trend and remains open to the south.

This release details the results from the third and final batch of drill results.

Highlights from the latest drilling results include:

Hippolyte South: Drilling defined mineralisation over a strike length of more than 8km and adds to the excellent results received during this drilling campaign, Figure 1. Significant intercepts include:

•	4.4m grading 283ppm U₃O ₈ from 0.8m	(23FEAC002120)
•	3.1m grading 387ppm U ₃ O ₈ from 0.2m	(23FEAC002112)
•	3.1m grading 340ppm U ₃ O ₈ from 0.7m	(23FEAC001821)
•	4.5m grading 212ppm U ₃ O ₈ from 0.3m	(23FEAC001862)

Sadi: Drilling extended mineralisation over 2km south of mineralised trend and mineralisation remains open to the south, Figure 2. Significant intercepts include:

•	9.4m grading 165ppm U₃O ₈ from 1.0m	(23ASAC002496)
•	5.4m grading 246ppm U ₃ O ₈ from 1.3m	(23ASAC002440)
•	5.0m grading 230ppm U ₃ O ₈ from 0.4m	(23ASAC002449)
•	3.4m grading 266ppm U ₃ O ₈ from 0.6m	(23ASAC002487)

Aura Energy's Managing Director and CEO Andrew Grove said:

"Mineralisation defined during this drilling program, partially at Hippolyte South and Sadi, is likely to materially add to the current 58.9Mlbs $U_3O_8^4$ Mineral Resources at Tiris. Work to update the Mineral Resources at Tiris has commenced and we look forward to receiving and presenting the results and demonstrating the significant growth potential of Tiris from additional shallow mineralisation that has proven exceptional beneficiation characteristics."

¹ ASX and AIM Release: 28 Feb 2024 - Aura's Tiris FEED Study Returns Excellent Economics

² ASX Release: 16 April 2024 – Update to Curzon Offtake Agreement

³ ASX Release: 11 March 2024 – Tiris drilling defines extensive new uranium mineralisation

⁴ ASX Release: 14 Feb 2023 - Major Resource Upgrade at Aura Energy's Tiris Project

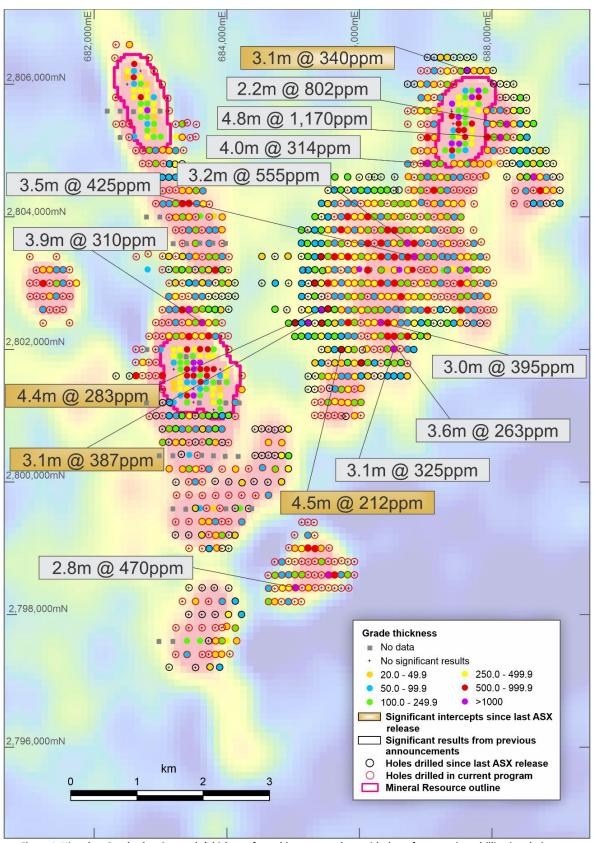


Figure 1. Hippolyte South: showing grade*thickness from this program along with those from previous drilling in relation to airborne U-radiometric anomalies and current resource outlines. Drilling has confirmed significant new mineralisation over at least an 8km strike length.

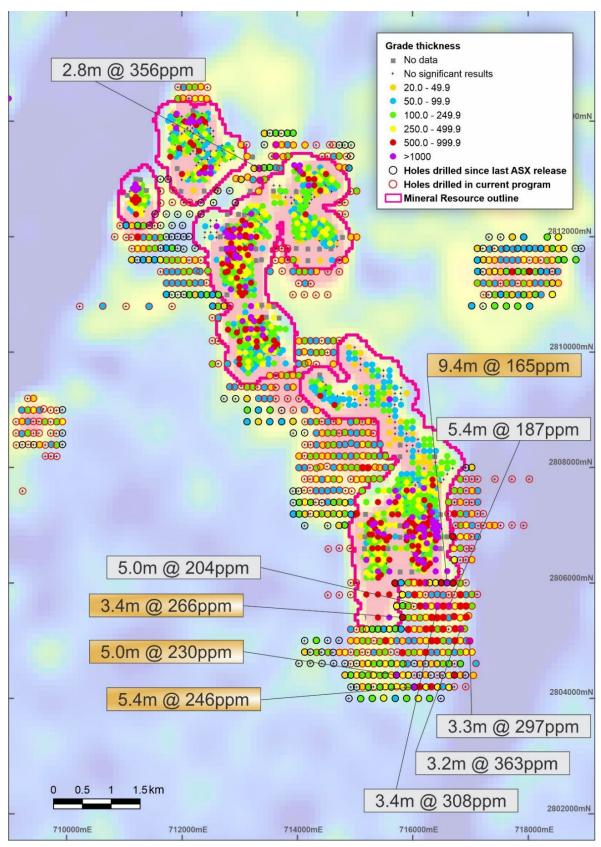


Figure 2. Sadi: showing grade*thickness from this program along with those from previous drilling in relation to airborne U-radiometric anomalies and current resource outlines. Drilling has confirmed significant mineralisation over 2km further south of the 9km mineralised trend. Significant intercepts occur on low strength radiometric anomalies, highlighting the opportunity to further extend mineralisation and mineralisation remains open to the south.

Aura Energy Limited (ASX: AEE, AIM: AURA) ("Aura" or "the Company") is pleased to provide an update on drilling results from the Tiris Uranium Project ("Tiris" or "the Project") in Mauritania.

This release includes the radiometric results from the third and final batch of drilling, comprising 583 air core drill holes (2,674m of drilling, average depth 4.6m) of the 15,500m exploration drilling program that commenced late in December 2023 and was completed on 4 April 2024 (Figure 3). A total of 15,263m of drilling was completed during the program.

The drill program aims to expand Tiris' Mineral Resources by targeting extensions to known mineralisation and testing previously undrilled radiometric anomalies around Tiris East. This includes testing of the previously announced Exploration Target⁵ of between 8Mlbs and 32Mlbs U₃O₈.

Drilling was planned in several phases, with phase one providing wide spaced drill holes to assess target viability, before proceeding to phase two follow-up, infill and step-out drilling.

The significant intercepts obtained from the drill holes are presented in Table 1, Appendix 1, drill hole locations tabled in Table 2, Appendix 2 and Figures showing the spatial distribution of grade and grade times thickness for each targeted prospect are presented in Appendix 3.

Discussion of material issues relevant to the JORC Code are limited to the current drilling program, JORC Table 1, Appendix 4.

A summary of drilling by prospect include in this release is as follows:

Prospect	Number of holes	Drilled metres
Hippolyte North	39	79
Hippolyte South	259	873
Lazare North	16	74
Lazare South	49	229
Sadi	220	1,419
Totals	583	2,674

A summary of the total drilling by prospect area for the whole program is as follows:

Prospect	Number of holes	Drilled metres
Hippolyte East	70	259
Hippolyte North	281	1,029
Hippolyte South	995	4,704
Hippolyte West C	131	698
Hippolyte West D	16	56
Lazare North	164	987
Lazare South	198	1,352
Marie EH	203	988
Marie FG	147	384
Sadi	791	4,807
Totals	2,996	15,263

-

⁵ ASX Release: 17 Oct 2023 – New Uranium Exploration Target identified at Tiris Project

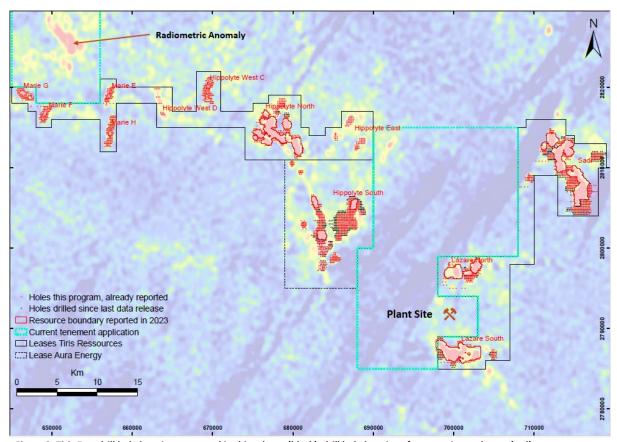


Figure 3. Tiris East drill hole locations reported in this release (black), drill hole locations from previous releases (red), resource areas, prospects, U-radiometric anomalies and granted tenements, tenement applications and plant site.

Tiris Uranium Project summary

The Tiris Uranium Project is in north-eastern Mauritania, approximately 1,200km northeast of the capital Nouakchott.

Calcrete-type uranium mineralisation was first identified by Aura from targeting high strength airborne radiometric anomalies. Mineralisation generally lies either within weathered, partially decomposed red granite or in colluvial gravels, within unconsolidated near-surface material and is typically less than five metres in depth. The uranium mineralisation occurs principally as carnotite.

The current uranium Mineral Resource totals $58.9 \text{Mlbs}\ U_3 O_8{}^6$ and is based on 21,990m of drilling in 5,619 holes. The total cost of delivering the Mineral Resource is only US\$0.20/lb $U_3 O_8$. The current drill results provide management with further confidence it can continue to grow the Project's resources, whilst maintaining a very low exploration cost.

The recently released Front End Engineering Design study ("FEED") 7,8 defined a near-term low-cost 2Mlbs U $_3$ O $_8$ pa uranium project with a 17-year mine life and very strong economics; NPV $_8$ US\$388M, IRR 36% and 2.5 year pay-back at a US\$ 80/lb U $_3$ O $_8$ price. The Project has significant optionality in the design, allowing expansion to accommodate growth in Mineral Resources.

Aura Energy plans to develop Tiris via shallow free dig open pit mining and exceptional beneficiation delivering low-cost, high-grade leach feed averaging 1,743ppm U_3O_8 from an average ore feed grade of just 255ppm U_3O_8 .

⁶ ASX Release: 17 Oct 2023 – New Uranium Exploration Target identified at Tiris Project

⁷ ASX Release: 28 Feb 2024 – Aura's Tiris FEED Study Returns Excellent Economics

⁸ ASX Release: 16 April 2024 – Update to Curzon Offtake Agreement

Discussion of exploration results

A very large number of significant intercepts were returned from the drilling and are presented in Table 1.

Historically, Aura has targeted only very high strength radiometric anomalies during exploration programs. This program sought to identify potential resources that may exist adjacent to the currently identified resources. Several conceptual targets were assessed, on low and extremely low strength anomalies. The large number of significant intercepts identified on such anomalies confirms that there is significant potential to identify further resources associated with lower strength radiometric targets. This is a major change from previous exploration in the area.

Hippolyte South

Hippolyte South drilling continues to return excellent results, supporting and expanding the extensive new mineralisation identified in the Phase 1 drilling⁹ and demonstrating continuity of mineralisation between previously defined mineralised areas. Mineralisation has been defined over an 8km strike and remains open in several areas, Figure 1 and 4. Hippolyte South remains highly prospective for future resource expansion.

Significant intercepts include:

•	4.4m grading 283ppm U3O8 from 0.8m	(23FEAC002120)
•	3.1m grading 387ppm U3O8 from 0.2m	(23FEAC002112)
•	3.1m grading 340ppm U3O8 from 0.7m	(23FEAC001821)
•	4.5m grading 212ppm U308 from 0.3m	(23FEAC001862)

A full list of the significant intercepts from Hippolyte South can be found in Table 1.

Sadi

The southern extension of mineralisation at Sadi has been further extended by the recent results from 1.2km to over 2km south of the existing mineralised trend and remains open to the south. Strongly mineralised drill results continue to be returned from areas of low-strength radiometric anomalies. Results also show continuity of mineralisation between previously defined mineralised areas and mineralisation remains open in several areas, Figure 2 and 6. Sadi remains highly prospective for future resource expansion.

Shallow significant intercepts include:

•	9.4m grading 165ppm U3O8 from 1.0m	(23ASAC002496)
•	5.4m grading 246ppm U3O8 from 1.3m	(23ASAC002440)
•	5.0m grading 230ppm U3O8 from 0.4m	(23ASAC002449)
•	3.4m grading 266ppm U3O8 from 0.6m	(23ASAC002487)

A full list of the significant intercepts from Sadi can be found in Table 1.

A general discussion of each of the targeted resource areas and prospects is presents below:

Target	Discussion on Results
Sadi	Drilling results show continuity of mineralisation between separate areas of
Figures: 2 and 6	the previous resource boundaries, with extensions shown in most directions.

⁹ ASX Release: 11 March 2024 – Tiris drilling defines extensive new uranium mineralisation

Target	Discussion on Results
	Drilling on the low tenor anomaly in the south continues to show solid results, with the mineralisation open in all directions.
Hippolyte South Figures: 1 and 4	Follow-up drilling on the eastern and western sides of Hippolyte South returned positive results, showing continuity of mineralisation between previously separate resource boundaries. Drilling on the eastern zone of Hippolyte south returned very good results and the mineralisation is still open in several areas. These targets should be drilled in the future to close off the mineralisation.
Hippolyte North Figure: 5	A small amount of follow-up drilling over anomalies on the northern edge of Hippolyte North returned a number of positive results, and this area remains prospective for future drilling. A small program to test the northeastern edge of the existing resource boundary returned very positive results, suggesting a ~600m extension to the mineralised zone that is still open.
Hippolyte East	Although several significant intercepts were returned in Phase 1 within the mineralised zone, this area was not targeted during Phase 2 drilling. This area remains prospective for future drilling.
Hippolyte West C	After receiving very solid results in Phase 1 and early Phase 2 drilling, no further drilling was undertaken since the previous report of exploration results.
Hippolyte West D	No further drilling was undertaken on this Target.
Lazare North Figure: 7	A small infill drilling program was undertaken, and returned positive results, showing continuity of mineralisation in the area defined by Phase 1 drilling.
Lazare South Figure: 7	Follow up drilling on the southwestern edge of the existing resource boundary showed good continuity of mineralisation. Infill drilling on the eastern anomaly returned positive results.
Marie E-H	After receiving very solid results in Phase 1 and early Phase 2 drilling, no further drilling was undertaken since the previous report of exploration results.
Marie F-G	After receiving very solid results in Phase 1 and early Phase 2 drilling, no further drilling was undertaken since the previous report of exploration results.

Further work drilling

A full update of the Tiris Mineral Resource estimate incorporating the new drilling data has commenced and will be published this quarter.

Activities continue at Tiris aimed at delivering a Final Investment Decision by the end of 2024, developing the mine and producing uranium in 2026.

The Board of Aura Energy Ltd has approved this announcement.

This Announcement contains inside information for the purposes of the UK version of the market abuse regulation (EU No. 596/2014) as it forms part of United Kingdom domestic law by virtue of the European Union (Withdrawal) Act 2018 ("UK MAR").

For further information, please contact:

Andrew Grove

Managing Director and CEO Aura Energy Limited agrove@auraee.com +61 414 011 383

Paul Ryan

Morrow Sodali Investor & Media Relations p.ryan@morrowsodali.com +61 409 296 511

SP Angel Corporate Finance LLP

Nominated Advisor and Broker David Hignell Kasia Brzozowska Grant Baker +44 203 470 0470

About Aura Energy (ASX: AEE, AIM: AURA)

Aura Energy is an Australian-based mineral company with major uranium and polymetallic projects in Africa and Europe.

The Company is focused on developing a uranium mine at the Tiris Uranium Project, a major greenfield uranium discovery in Mauritania. The February 2024 FEED study demonstrated Tiris to be a near-term low-cost 2Mlbs U_3O_8 pa near term uranium mine with a 17-year mine life with excellent economics and optionality to expand to accommodate resource growth.

Aura plans to transition from a uranium explorer to a uranium producer to capitalise on the rapidly growing demand for nuclear power as the world shifts towards a decarbonised energy sector.

Beyond the Tiris Project, Aura owns 100% of the Häggån Project in Sweden. Häggån contains a global-scale 2.5Bt vanadium, sulphate of potash ("SOP") and uranium resource. Utilising only 3% of the resource, a 2023 Scoping Study outlined a 27-year mine life based on mining 3.5Mtpa.

Disclaimer Regarding Forward-Looking Statements

This ASX announcement (Announcement) contains various forward-looking statements. All statements other than statements of historical fact are forward-looking statements. Forward-looking statements are inherently subject to uncertainties in that they may be affected by a variety of known and unknown risks, variables and factors which could cause actual values or results, performance or achievements to differ materially from the expectations described in such forward-looking statements. The Company does not give any assurance or guarantee that the anticipated results, performance or achievements expressed or implied in those forward-looking statements will be achieved.

Competent Persons Statement

The Competent Person for the calculation of significant intercepts is Mr Arnold van der Heyden of H&S Consulting Pty Ltd. The information in the report to which this statement is attached that relates to the 2023 Mineral Resource Estimate is based on information compiled by Mr van der Heyden. Mr van der Heyden has sufficient experience that is relevant to the resource estimation to qualify Mr van der Heyden as a Competent Person as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr van der Heyden is an employee of H&S Consultants Pty Ltd, a Sydney based geological consulting firm. Mr van der Heyden is a Member and Chartered Professional of The Australasian Institute of Mining and Metallurgy (AusIMM) and consents to the inclusion in the report of the matters based on his information.

The Competent Person for drill hole data is Dr Michael Fletcher. The information in the report to which this statement is attached that relates to compiling resource estimates and to drill hole data is based on information compiled by Dr Michael Fletcher. Dr Fletcher has sufficient relevant experience in the preparation and compilation of exploration data across a broad range of deposits to qualify as a Competent Person as defined in

the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Dr Fletcher is a consultant to Aura Energy and a full-time employee of GeoEndeavours Pty Ltd. Dr Fletcher is a Member of the Australasian Institute of Geoscientists and consents to the inclusion in the report of this information.

The Competent Person for interpreting downhole gamma information, disequilibrium analysis and assay results is Mr David Wilson. Mr Wilson has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Wilson is a consultant to Aura Energy and is a full-time employee of 3D Exploration. Mr Wilson is a Member of the Australasian Institute of Geoscientists and consents to the inclusion in the report of the matters based on his information.

The Tiris Uranium Resource Estimate was reported in 2023 under the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". The Mineral Resource Estimate was detailed in ASX announcement: "Major Resource Upgrade at Aura Energy's Tiris Project" 14th February 2023. Aura confirms that it is not aware of any new information or data that materially affects the information included in this announcement regarding the mineral resources and that all material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed.

Appendix 1 – Table 1: Significant intercepts reported in this release.

		FROM	то	Thickness	Grade	Grade x
Prospect	Hole ID	m	m	m	ppm U₃O ₈	Thickness
Hippolyte North	23FEAC001982	0.2	1.5	1.3	211	279
Hippolyte North	23FEAC001984	0.9	1.4	0.5	117	62
Hippolyte North	23FEAC002031	1.0	1.6	0.6	110	69
Hippolyte North	23FEAC002039	1.0	2.3	1.3	115	149
Hippolyte North	23FEAC002041	0.5	1.2	0.8	147	114
Hippolyte North	23FEAC002043	0.3	2.5	2.2	185	406
Hippolyte North	23FEAC002045	0.6	1.6	1.0	270	276
Hippolyte South	23FEAC001821	0.7	3.8	3.1	340	1048
Hippolyte South	23FEAC001826	0.2	1.7	1.4	249	354
Hippolyte South	23FEAC001826	2.5	3.0	0.5	109	54
Hippolyte South	23FEAC001827	0.6	1.4	0.8	321	247
Hippolyte South	23FEAC001827	2.1	2.7	0.7	219	142
Hippolyte South	23FEAC001830	1.9	4.3	2.3	163	379
Hippolyte South	23FEAC001831	1.9	2.8	1.0	110	104
Hippolyte South	23FEAC001833	1.3	1.8	0.5	113	57
Hippolyte South	23FEAC001834	1.0	1.7	0.7	345	245
Hippolyte South	23FEAC001836	0.8	2.0	1.2	202	244
Hippolyte South	23FEAC001840	0.9	2.0	1.1	117	124
Hippolyte South	23FEAC001858	1.8	3.7	1.9	317	599
Hippolyte South	23FEAC001860	0.4	1.1	0.8	136	102
Hippolyte South	23FEAC001861	2.2	2.8	0.6	174	101
Hippolyte South	23FEAC001862	0.3	4.8	4.5	212	959
Hippolyte South	23FEAC001863	2.2	4.6	2.4	203	490
Hippolyte South	23FEAC001866	2.0	2.5	0.5	127	63
Hippolyte South	23FEAC001867	0.5	3.4	2.9	143	417
Hippolyte South	23FEAC001868	2.6	4.2	1.6	145	237
Hippolyte South	23FEAC001870	1.3	3.4	2.2	125	273
Hippolyte South	23FEAC001879	1.4	3.3	2.0	288	561
Hippolyte South	23FEAC001879	3.9	5.4	1.5	139	201
Hippolyte South	23FEAC001883	3.7	4.5	0.8	137	110
Hippolyte South	23FEAC001885	0.6	5.0	4.4	189	824
Hippolyte South	23FEAC001886	2.2	4.2	1.9	139	268
Hippolyte South	23FEAC001887	2.0	2.9	0.9	114	104
Hippolyte South	23FEAC001888	2.3	2.8	0.5	129	66
Hippolyte South	23FEAC001888	3.6	5.1	1.5	149	223
Hippolyte South	23FEAC001889	4.5	5.0	0.5	107	54
Hippolyte South	23FEAC001890	1.1	5.0	3.9	130	505
Hippolyte South	23FEAC001891	2.6	3.1	0.5	139	70

Prospect	Hole ID	FROM	то	Thickness	Grade	Grade x
Поэрсси	Tiole 15	m	m	m	ppm U₃O ₈	Thickness
Hippolyte South	23FEAC001892	4.0	4.8	0.8	126	96
Hippolyte South	23FEAC001900	1.8	2.7	0.8	116	94
Hippolyte South	23FEAC001901	0.4	1.6	1.2	163	191
Hippolyte South	23FEAC001908	1.1	1.6	0.5	144	72
Hippolyte South	23FEAC001909	1.0	1.8	0.8	212	174
Hippolyte South	23FEAC001910	2.2	2.8	0.6	141	79
Hippolyte South	23FEAC001923	1.2	2.8	1.7	171	289
Hippolyte South	23FEAC001928	0.6	1.1	0.5	104	52
Hippolyte South	23FEAC001929	3.3	3.8	0.5	104	53
Hippolyte South	23FEAC001938	2.5	3.2	0.7	152	108
Hippolyte South	23FEAC001950	0.8	1.9	1.1	191	206
Hippolyte South	23FEAC001951	2.3	3.2	1.0	126	122
Hippolyte South	23FEAC001956	1.0	2.0	0.9	126	119
Hippolyte South	23FEAC001958	0.5	1.9	1.4	142	200
Hippolyte South	23FEAC001959	0.7	2.2	1.5	131	193
Hippolyte South	23FEAC002004	0.4	2.1	1.7	179	304
Hippolyte South	23FEAC002010	0.2	1.9	1.7	208	354
Hippolyte South	23FEAC002011	1.9	2.7	0.8	130	100
Hippolyte South	23FEAC002014	2.4	3.3	0.9	134	116
Hippolyte South	23FEAC002020	0.5	3.1	2.6	113	288
Hippolyte South	23FEAC002022	0.3	0.8	0.5	104	52
Hippolyte South	23FEAC002099	0.6	1.3	0.7	128	86
Hippolyte South	23FEAC002100	0.5	1.0	0.5	107	54
Hippolyte South	23FEAC002101	0.4	0.9	0.5	119	59
Hippolyte South	23FEAC002105	2.5	3.2	0.7	112	76
Hippolyte South	23FEAC002106	2.2	4.1	1.9	230	439
Hippolyte South	23FEAC002108	1.7	2.8	1.1	160	180
Hippolyte South	23FEAC002108	3.4	3.9	0.5	111	55
Hippolyte South	23FEAC002109	0.8	1.7	0.9	131	112
Hippolyte South	23FEAC002111	3.2	3.9	0.7	110	81
Hippolyte South	23FEAC002112	0.2	3.2	3.1	387	1185
Hippolyte South	23FEAC002114	1.5	3.3	1.8	281	503
Hippolyte South	23FEAC002118	2.1	3.8	1.7	157	269
Hippolyte South	23FEAC002119	2.0	2.7	0.7	101	70
Hippolyte South	23FEAC002120	0.8	5.2	4.4	283	1255
Hippolyte South	23FEAC002121	3.1	3.6	0.5	118	59
Hippolyte South	23FEAC002129	2.7	3.2	0.5	107	54
Hippolyte South	23FEAC002134	2.9	4.7	1.8	108	192
Hippolyte South	23FEAC002135	1.9	2.5	0.6	110	66

Prospect	Hole ID	FROM	то	Thickness	Grade	Grade x
riospect	Hole ID	m	m	m	ppm U₃O ₈	Thickness
Hippolyte South	23FEAC002136	2.8	3.9	1.1	143	163
Hippolyte South	23FEAC002137	2.5	3.4	0.9	156	135
Hippolyte South	23FEAC002139	5.2	5.7	0.5	110	55
Hippolyte South	23FEAC002141	0.6	2.5	1.9	122	236
Hippolyte South	23FEAC002146	1.9	2.7	0.8	140	112
Hippolyte South	23FEAC002146	3.7	4.2	0.5	102	51
Hippolyte South	23FEAC002153	2.6	3.3	0.7	160	117
Hippolyte South	23FEAC002154	2.6	3.1	0.5	146	73
Hippolyte South	23FEAC002155	1.8	3.5	1.7	113	195
Hippolyte South	23FEAC002156	2.2	3.1	0.9	153	131
Hippolyte South	23FEAC002156	4.1	4.6	0.5	128	64
Hippolyte South	23FEAC002157	0.8	4.5	3.7	220	813
Lazare North	23ASAC002408	1.1	1.9	0.8	261	212
Lazare South	23ASAC002373	3.4	4.5	1.1	127	133
Lazare South	23ASAC002383	1.4	1.9	0.5	110	55
Lazare South	23ASAC002384	2.4	3.6	1.2	152	181
Lazare South	23ASAC002385	0.7	3.1	2.3	229	530
Lazare South	23ASAC002386	2.8	5.1	2.3	209	479
Lazare South	23ASAC002392	0.6	4.5	3.8	211	807
Lazare South	23ASAC002398	4.0	5.2	1.2	160	190
Sadi	23ASAC002426	2.6	3.4	0.8	173	138
Sadi	23ASAC002428	1.4	2.7	1.3	126	165
Sadi	23ASAC002428	9.3	10.2	0.9	442	384
Sadi	23ASAC002429	2.5	3.1	0.5	114	59
Sadi	23ASAC002430	2.1	3.3	1.3	187	235
Sadi	23ASAC002432	2.7	3.6	0.9	116	102
Sadi	23ASAC002437	2.2	3.2	1.1	114	121
Sadi	23ASAC002438	1.5	3.0	1.6	141	218
Sadi	23ASAC002438	4.8	5.4	0.6	134	76
Sadi	23ASAC002439	1.6	4.3	2.7	156	419
Sadi	23ASAC002440	1.3	6.7	5.4	246	1332
Sadi	23ASAC002441	2.3	3.7	1.5	282	409
Sadi	23ASAC002442	1.6	3.1	1.5	241	371
Sadi	23ASAC002446	1.3	2.8	1.5	141	209
Sadi	23ASAC002448	1.1	1.6	0.6	172	96
Sadi	23ASAC002448	8.2	9.3	1.2	141	165
Sadi	23ASAC002449	0.4	5.4	5.0	230	1138
Sadi	23ASAC002450	0.6	2.8	2.2	184	408
Sadi	23ASAC002450	4.2	5.6	1.4	150	204

Prospect	Hole ID	FROM	то	Thickness	Grade	Grade x
Prospect	noie ib	m	m	m	ppm U₃O ₈	Thickness
Sadi	23ASAC002454	2.5	3.5	1.0	119	122
Sadi	23ASAC002454	4.5	8.1	3.6	193	688
Sadi	23ASAC002462	1.0	3.9	2.9	155	447
Sadi	23ASAC002463	1.3	3.2	1.9	130	250
Sadi	23ASAC002463	4.6	5.9	1.3	104	137
Sadi	23ASAC002465	3.9	4.8	0.9	136	120
Sadi	23ASAC002469	2.2	3.9	1.7	134	225
Sadi	23ASAC002470	3.7	4.2	0.5	126	64
Sadi	23ASAC002470	4.8	5.4	0.6	183	101
Sadi	23ASAC002480	0.6	2.8	2.1	206	436
Sadi	23ASAC002481	0.7	2.2	1.5	134	204
Sadi	23ASAC002482	0.6	2.5	1.8	134	246
Sadi	23ASAC002483	0.8	1.6	0.9	114	97
Sadi	23ASAC002485	0.9	1.8	0.9	131	111
Sadi	23ASAC002486	1.3	1.8	0.5	126	63
Sadi	23ASAC002487	0.6	4.1	3.4	266	914
Sadi	23ASAC002487	4.9	6.4	1.5	172	252
Sadi	23ASAC002488	1.0	3.6	2.6	114	292
Sadi	23ASAC002489	2.5	4.1	1.6	126	205
Sadi	23ASAC002490	0.4	3.9	3.5	126	443
Sadi	23ASAC002491	0.6	3.3	2.7	221	587
Sadi	23ASAC002491	8.3	8.8	0.5	110	55
Sadi	23ASAC002493	1.4	3.7	2.3	163	370
Sadi	23ASAC002495	0.0	2.6	2.6	289	740
Sadi	23ASAC002496	1.0	10.4	9.4	165	1557
Sadi	23ASAC002497	0.3	2.2	1.9	270	515
Sadi	23ASAC002498	0.9	3.6	2.7	136	363
Sadi	23ASAC002498	4.2	4.7	0.5	106	53
Sadi	23ASAC002499	1.5	4.2	2.8	269	740
Sadi	23ASAC002508	3.0	4.0	1.0	193	189
Sadi	23ASAC002512	1.9	3.2	1.3	224	296
Sadi	23ASAC002515	1.7	2.2	0.5	111	56
Sadi	23ASAC002515	2.9	3.4	0.5	175	88
Sadi	23ASAC002518	1.3	3.0	1.7	139	240
Sadi	23ASAC002526	4.4	4.9	0.5	109	54
Sadi	23ASAC002528	2.1	2.6	0.5	116	58
Sadi	23ASAC002531	3.3	3.9	0.6	224	132
Sadi	23ASAC002543	1.2	1.7	0.5	118	59
Sadi	23ASAC002546	8.1	9.7	1.7	126	210

Dunanant	Hele ID	FROM	то	Thickness	Grade	Grade x
Prospect	Hole ID	m	m	m	ppm U₃O ₈	Thickness
Sadi	23ASAC002548	4.5	5.0	0.5	102	51
Sadi	23ASAC002556	1.9	2.4	0.6	154	85
Sadi	23ASAC002558	3.2	4.2	1.1	249	264
Sadi	23ASAC002559	1.7	2.6	0.9	144	133
Sadi	23ASAC002559	3.7	4.2	0.5	139	69
Sadi	23ASAC002560	0.8	1.5	0.8	273	210
Sadi	23ASAC002561	1.9	4.9	3.1	188	575
Sadi	23ASAC002566	1.5	2.5	1.0	132	135
Sadi	23ASAC002576	3.5	4.7	1.2	112	129
Sadi	23ASAC002577	2.3	4.3	1.9	145	277
Sadi	23ASAC002577	4.8	5.3	0.5	105	52
Sadi	23ASAC002585	2.3	3.3	1.0	113	108
Sadi	23ASAC002586	0.1	2.0	1.8	245	448
Sadi	23ASAC002587	2.2	2.7	0.5	133	66
Sadi	23ASAC002593	2.7	3.2	0.5	250	135
Sadi	23ASAC002595	2.4	2.9	0.5	110	55
Sadi	23ASAC002598	4.5	5.5	0.9	162	147
Sadi	23ASAC002601	3.4	4.2	0.8	105	84
Sadi	23ASAC002603	4.2	4.7	0.5	147	74
Sadi	23ASAC002606	3.6	4.1	0.5	101	50
Sadi	23ASAC002606	6.6	7.1	0.5	104	52
Sadi	23ASAC002617	5.5	6.0	0.5	130	65
Sadi	23ASAC002618	1.6	3.0	1.4	155	220
Sadi	23ASAC002618	4.7	5.2	0.5	132	66
Sadi	23ASAC002640	1.5	2.1	0.6	211	129
Sadi	23ASAC002649	2.1	3.2	1.1	115	124
Sadi	23ASAC002650	1.7	2.5	0.8	155	124

Note: Holes without significant intercepts not reported in Table 1

Note: Highlighted holes called out in the body of the release

Note: All holes drilled vertical, intervals are down hole depths and thicknesses represent true thicknesses due to the flat nature of the mineralisation

Appendix 2 – Table 2: Collar table for all holes reported in this release

Prospect	Hole ID	Total Depth	E	N	RL	Prospect	Hole ID	Total Depth	E	N	RL
		m						m			
Hippolyte North	23FEAC001975	0.9	683,529	2,797,199	380	Hippolyte South	23FEAC002155	3.7	685,329	2,802,196	396
Hippolyte North	23FEAC001976	2.0	683,748	2,797,208	381	Hippolyte South	23FEAC002156	5.0	684,933	2,802,395	396
Hippolyte North	23FEAC001977	1.2	683,891	2,797,204	382	Hippolyte South	23FEAC002157	5.1	685,032	2,802,398	396
Hippolyte North	23FEAC001978	1.1	683,728	2,797,601	382	Hippolyte South	23FEAC002158	5.5	685,330	2,803,997	400
Hippolyte North	23FEAC001979	4.9	683,428	2,797,999	381	Hippolyte South	23FEAC002159	7.3	685,429	2,803,997	400
Hippolyte North	23FEAC001980	0.8	683,629	2,797,998	382	Hippolyte South	23FEAC002160	7.2	685,530	2,803,995	40
Hippolyte North	23FEAC001981	1.8	683,826	2,797,999	383	Lazare North	23ASAC002405	7.6	701,431	2,796,192	39
Hippolyte North	23FEAC001982	1.7	684,028	2,797,998	384	Lazare North	23ASAC002406	7.4	701,631	2,796,195	39
Hippolyte North	23FEAC001983	5.0	684,224	2,798,001	384	Lazare North	23ASAC002407	6.0	701,830	2,796,193	39
Hippolyte North	23FEAC001984	2.9	684,128	2,798,200	384	Lazare North	23ASAC002408	2.0	701,282	2,796,398	39
Hippolyte North	23FEAC001985	1.4	683,431	2,798,402	382	Lazare North	23ASAC002409	2.8	702,630	2,796,397	39
Hippolyte North	23FEAC001986	2.1	683,627	2,798,401	382	Lazare North	23ASAC002410	3.8	702,826	2,796,395	39
Hippolyte North	23FEAC001987	0.8	683,811	2,798,404	383	Lazare North	23ASAC002411	2.2	702,916	2,796,398	39
Hippolyte North	23FEAC001988	1.1	684,030	2,798,399	384	Lazare North	23ASAC002413	0.7	701,335	2,796,594	40
Hippolyte North	23FEAC001989	0.9	683,226	2,799,200	382	Lazare North	23ASAC002414	7.3	702,925	2,796,597	39
Hippolyte North	23FEAC001990	0.6	683,426	2,799,196	383	Lazare North	23ASAC002415	1.1	703,027	2,796,613	39
Hippolyte North	23FEAC001991	1.6	683,625	2,799,199	383	Lazare North	23ASAC002419	6.6	701,329	2,797,396	40
Hippolyte North	23FEAC001994	1.5	683,531	2,799,600	382	Lazare North	23ASAC002420	7.2	701,530	2,797,396	40
Hippolyte North	23FEAC001995	1.8	684,130	2,799,600	385	Lazare North	23ASAC002421	4.3	701,730	2,797,396	40
Hippolyte North	23FEAC001996	0.9	684,331	2,799,597	386	Lazare North	23ASAC002422	7.0	702,032	2,797,395	40
Hippolyte North	23FEAC002030	3.1	678,938	2,816,417	412	Lazare North	23ASAC002423	4.7	701,338	2,797,595	40
Hippolyte North	23FEAC002031	2.1	678,996	2,816,400	412	Lazare North	23ASAC002424	3.8	701,434	2,797,597	40
Hippolyte North	23FEAC002032	1.9	679,429	2,816,396	411	Lazare South	23ASAC002356	2.3	699,915	2,785,204	38
Hippolyte North	23FEAC002033	3.1	679,539	2,816,395	411	Lazare South	23ASAC002357	1.4	700,132	2,785,202	38
Hippolyte North	23FEAC002036	2.2	678,926	2,816,598	412	Lazare South	23ASAC002358	3.0	699,629	2,785,398	38
Hippolyte North	23FEAC002037	2.9	679,027	2,816,597	412	Lazare South	23ASAC002359	2.4	699,828	2,785,400	38
Hippolyte North	23FEAC002039	3.9	679,228	2,816,598	412	Lazare South	23ASAC002360	2.8	700,028	2,785,400	38
Hippolyte North	23FEAC002040	1.5	679,329	2,816,597	411	Lazare South	23ASAC002361	3.1	700,228	2,785,398	38
Hippolyte North	23FEAC002041	1.5	679,427	2,816,600	411	Lazare South	23ASAC002362	2.1	699,725	2,785,599	38
Hippolyte North	23FEAC002042	1.4	679,526	2,816,599	412	Lazare South	23ASAC002363	2.0	699,929	2,785,597	38
Hippolyte North	23FEAC002043	3.1	677,926	2,816,799	413	Lazare South	23ASAC002364	2.6	700,127	2,785,600	38
Hippolyte North	23FEAC002044	2.1	678,228	2,816,797	412	Lazare South	23ASAC002365	5.7	698,128	2,786,200	39
Hippolyte North	23FEAC002045	1.7	679,026	2,816,797	412	Lazare South	23ASAC002366	6.3	698,325	2,786,200	39
Hippolyte North	23FEAC002046	0.9	679,228	2,816,798	412	Lazare South	23ASAC002367	1.5	698,533	2,786,198	39
Hippolyte North	23FEAC002047	5.2	679,429	2,816,797	412	Lazare South	23ASAC002368	4.1	698,024	2,786,395	39
Hippolyte North	23FEAC002048	1.5	677,929	2,816,998	413	Lazare South	23ASAC002369	4.2	698,227	2,786,399	39
Hippolyte North	23FEAC002049	2.5	678,126	2,817,000	412	Lazare South	23ASAC002370	3.5	698,430	2,786,399	39
Hippolyte North	23FEAC002050	1.0	678,228	2,816,996	412	Lazare South	23ASAC002371	2.3	698,627	2,786,399	39

Prospect	Hole ID	Total Depth	E	N	RL	Prospect	Hole ID	Total Depth	E	N	RL
Hippolyte		m			_			m			
North Hippolyte	23FEAC002051	2.1	678,327	2,816,996	412	Lazare South	23ASAC002372	2.4	698,024	2,786,596	392
South	23FEAC001813	4.8	687,027	2,806,400	407	Lazare South	23ASAC002373	6.6	698,225	2,786,598	391
South	23FEAC001814	5.0	687,129	2,806,400	407	Lazare South	23ASAC002374	4.1	698,427	2,786,598	391
Hippolyte South	23FEAC001815	4.8	687,224	2,806,402	406	Lazare South	23ASAC002375	3.4	698,628	2,786,598	390
Hippolyte South	23FEAC001816	5.0	687,326	2,806,403	406	Lazare South	23ASAC002376	2.7	698,029	2,786,797	391
Hippolyte South	23FEAC001817	5.0	687,428	2,806,403	406	Lazare South	23ASAC002377	5.3	698,227	2,786,798	391
Hippolyte South	23FEAC001818	5.2	687,526	2,806,402	406	Lazare South	23ASAC002378	7.3	698,428	2,786,798	391
Hippolyte South	23FEAC001819	6.2	687,626	2,806,402	405	Lazare South	23ASAC002379	7.0	698,628	2,786,800	390
Hippolyte South	23FEAC001820	2.5	687,728	2,806,404	405	Lazare South	23ASAC002380	2.8	698,126	2,786,996	391
Hippolyte South	23FEAC001821	3.9	687,628	2,806,203	405	Lazare South	23ASAC002381	6.4	698,333	2,786,999	391
Hippolyte South	23FEAC001822	5.3	687,826	2,806,200	404	Lazare South	23ASAC002382	2.6	698,538	2,786,997	391
Hippolyte South	23FEAC001823	1.0	688,023	2,806,202	403	Lazare South	23ASAC002383	3.5	698,127	2,787,198	391
Hippolyte South	23FEAC001824	3.9	688,027	2,806,001	403	Lazare South	23ASAC002384	5.0	698,325	2,787,196	391
Hippolyte South	23FEAC001825	2.7	688,130	2,806,002	403	Lazare South	23ASAC002385	5.0	698,528	2,787,197	391
Hippolyte South	23FEAC001826	3.1	688,331	2,805,600	402	Lazare South	23ASAC002386	7.2	698,132	2,788,799	395
Hippolyte South	23FEAC001827	2.9	688,429	2,805,601	402	Lazare South	23ASAC002387	7.2	698,328	2,788,799	395
Hippolyte South	23FEAC001828	2.9	688,528	2,805,600	402	Lazare South	23ASAC002388	7.0	698,525	2,788,795	396
Hippolyte South	23FEAC001829	2.2	688,430	2,805,400	401	Lazare South	23ASAC002389	7.4	704,528	2,786,998	385
Hippolyte South	23FEAC001830	4.4	688,529	2,805,396	402	Lazare South	23ASAC002390	2.8	704,629	2,786,997	385
Hippolyte South	23FEAC001831	5.0	688,627	2,805,401	402	Lazare South	23ASAC002391	2.7	704,838	2,786,995	385
Hippolyte South	23FEAC001832	2.2	688,426	2,805,192	401	Lazare South	23ASAC002392	4.7	705,025	2,786,998	386
Hippolyte South	23FEAC001833	2.6	688,529	2,805,199	401	Lazare South	23ASAC002393	5.7	705,228	2,786,994	386
Hippolyte	23FEAC001834	1.9	688,530	2,804,798	400	Lazare South	23ASAC002394	7.0	705,325	2,786,994	386
South Hippolyte	23FEAC001835	1.6	688,627	2,804,800	400	Lazare South	23ASAC002395	7.2	704,429	2,786,797	385
South Hippolyte	23FEAC001836	2.2	688,730	2,804,802	400	Lazare South	23ASAC002396	5.2	704,529	2,786,798	385
South Hippolyte	23FEAC001837	1.0	688,829	2,804,802	400	Lazare South	23ASAC002397	6.0	704,530	2,786,595	385
South Hippolyte	23FEAC001838	1.8	688,929	2,804,801	400	Lazare South	23ASAC002398	7.1	704,629	2,786,596	385
South Hippolyte	23FEAC001839	1.9	688,427	2,804,599	399	Lazare South	23ASAC002399	7.0	704,828	2,786,596	386
South Hippolyte	23FEAC001840	2.2	688,532	2,804,599	399	Lazare South	23ASAC002393	7.4	705,030	2,786,595	387
South Hippolyte	23FEAC001841	1.3	688,926	2,804,598	400	Lazare South	23ASAC002400 23ASAC002401	5.0	705,228	2,786,597	387
South Hippolyte											
South Hippolyte	23FEAC001842	2.1	689,028	2,804,598	401	Lazare South	23ASAC002402	4.5	704,727	2,786,197	385
South	23FEAC001843	1.6	689,028	2,804,399	401	Lazare South	23ASAC002403	7.3	704,931	2,786,195	386
South	23FEAC001844	2.3	688,627	2,804,200	399	Lazare South	23ASAC002404	7.3	705,128	2,786,196	387
South	23FEAC001845	2.3	688,826	2,804,201	399	Sadi	23ASAC002425	7.0	714,900	2,803,996	417
South	23FEAC001846	2.9	688,929	2,804,199	400	Sadi	23ASAC002426	4.8	715,098	2,803,992	417
Hippolyte South	23FEAC001847	4.7	689,028	2,804,199	400	Sadi	23ASAC002427	7.1	715,303	2,803,998	417
Hippolyte South	23FEAC001848	1.0	685,798	2,800,988	391	Sadi	23ASAC002428	10.0	715,497	2,803,999	417
Hippolyte South	23FEAC001849	0.7	685,228	2,801,395	392	Sadi	23ASAC002429	10.2	715,699	2,803,998	417
Hippolyte South	23FEAC001850	2.9	685,327	2,801,397	392	Sadi	23ASAC002430	9.7	715,899	2,803,998	417

Prospect	Hole ID	Total Depth	E	N	RL	Prospect	Hole ID	Total Depth	E	N	RL
Hippolyte	23FEAC001851	m	685,552	2,801,412	393	Sadi	23ASAC002431	m	716.099	2.803.998	418
South Hippolyte	23FEAC001852	2.1	685,228	2,801,590	393	Sadi	23ASAC002432	8.1	716,297	2,803,998	418
South Hippolyte South	23FEAC001853	0.7	685,335	2,801,597	394	Sadi	23ASAC002433	9.8	716,495	2,803,995	418
Hippolyte South	23FEAC001854	5.1	685,331	2,801,795	394	Sadi	23ASAC002434	9.9	714,933	2,804,195	418
Hippolyte South	23FEAC001855	2.1	685,431	2,801,794	394	Sadi	23ASAC002435	10.0	715,031	2,804,193	418
Hippolyte South	23FEAC001856	1.9	685,631	2,801,794	394	Sadi	23ASAC002436	10.2	715,231	2,804,193	417
Hippolyte South	23FEAC001857	5.1	685,826	2,801,796	394	Sadi	23ASAC002437	10.0	715,435	2,804,193	417
Hippolyte South	23FEAC001858	3.8	686,031	2,801,795	394	Sadi	23ASAC002438	6.5	715,634	2,804,193	417
Hippolyte South	23FEAC001859	1.5	686,232	2,801,794	394	Sadi	23ASAC002439	5.8	715,834	2,804,191	417
Hippolyte South	23FEAC001860	3.2	686,428	2,801,796	395	Sadi	23ASAC002440	10.3	716,033	2,804,192	417
Hippolyte South	23FEAC001861	2.8	686,631	2,801,796	394	Sadi	23ASAC002441	4.5	716,233	2,804,192	418
Hippolyte South	23FEAC001862	5.0	685,731	2,801,997	395	Sadi	23ASAC002442	10.1	716,433	2,804,191	418
Hippolyte South	23FEAC001863	4.7	685,834	2,801,996	395	Sadi	23ASAC002443	8.1	716,630	2,804,191	418
Hippolyte South	23FEAC001864	1.7	686,045	2,801,991	395	Sadi	23ASAC002444	10.6	714,829	2,804,399	418
Hippolyte South	23FEAC001865	2.0	686,823	2,801,996	395	Sadi	23ASAC002445	10.5	714,926	2,804,398	417
Hippolyte South	23FEAC001866	2.7	685,728	2,802,197	396	Sadi	23ASAC002446	10.4	715,126	2,804,399	417
Hippolyte South	23FEAC001867	3.8	686,828	2,802,195	396	Sadi	23ASAC002447	9.8	715,323	2,804,398	417
Hippolyte South	23FEAC001868	4.8	685,528	2,802,399	397	Sadi	23ASAC002448	10.2	715,526	2,804,400	417
Hippolyte South	23FEAC001869	3.3	685,633	2,802,394	397	Sadi	23ASAC002449	10.1	715,722	2,804,399	417
Hippolyte South	23FEAC001870	4.2	686,832	2,802,392	397	Sadi	23ASAC002450	8.0	715,926	2,804,401	417
Hippolyte South	23FEAC001871	3.2	686,932	2,802,395	397	Sadi	23ASAC002451	10.2	716,123	2,804,400	417
Hippolyte South	23FEAC001872	3.0	687,035	2,802,397	397	Sadi	23ASAC002452	5.3	716,321	2,804,401	419
Hippolyte South	23FEAC001873	3.1	687,126	2,802,394	397	Sadi	23ASAC002453	6.0	716,521	2,804,402	418
Hippolyte South	23FEAC001874	2.3	687,227	2,802,394	397	Sadi	23ASAC002454	10.3	716,724	2,804,401	418
Hippolyte South	23FEAC001875	4.1	687,329	2,802,393	397	Sadi	23ASAC002455	10.1	716,917	2,804,402	418
Hippolyte South	23FEAC001876	4.9	687,427	2,802,392	397	Sadi	23ASAC002456	10.0	714,031	2,804,600	418
Hippolyte South	23FEAC001877	1.8	687,624	2,802,392	396	Sadi	23ASAC002457	10.0	714,227	2,804,601	418
Hippolyte South	23FEAC001878	2.1	687,825	2,802,393	396	Sadi	23ASAC002458	5.1	714,431	2,804,601	418
Hippolyte South	23FEAC001879	7.0	685,531	2,802,606	398	Sadi	23ASAC002459	10.0	714,630	2,804,602	418
Hippolyte South	23FEAC001880	7.3	685,626	2,802,598	398	Sadi	23ASAC002460	8.9	714,831	2,804,601	418
Hippolyte South	23FEAC001881	2.8	687,225	2,802,598	398	Sadi	23ASAC002461	10.1	715,032	2,804,600	417
Hippolyte South	23FEAC001882	3.0	687,325	2,802,599	398	Sadi	23ASAC002462	10.6	715,230	2,804,601	417
Hippolyte South	23FEAC001883	7.3	685,328	2,802,800	398	Sadi	23ASAC002463	8.4	715,432	2,804,600	417
Hippolyte South	23FEAC001884	5.2	685,429	2,802,797	398	Sadi	23ASAC002464	6.4	715,631	2,804,603	417
Hippolyte South	23FEAC001885	7.3	685,326	2,802,998	399	Sadi	23ASAC002465	8.2	715,832	2,804,599	417
Hippolyte South	23FEAC001886	7.4	685,426	2,802,998	399	Sadi	23ASAC002466	1.8	716,031	2,804,600	418
Hippolyte South	23FEAC001887	7.3	685,332	2,803,197	399	Sadi	23ASAC002467	4.4	716,230	2,804,598	418
Hippolyte South	23FEAC001888	6.6	685,449	2,803,185	399	Sadi	23ASAC002468	5.2	716,427	2,804,597	418
Hippolyte South	23FEAC001889	5.1	685,328	2,803,396	400	Sadi	23ASAC002469	4.6	716,632	2,804,596	418

Prospect	Hole ID	Total Depth	E	N	RL	Prospect	Hole ID	Total Depth	E	N	RL
Hippolyte	22554 0004 000	m	COE 422	2 002 207	400	C-di	23ASAC002470	m	746 020	2 004 500	440
South Hippolyte	23FEAC001890	7.0	685,422	2,803,397	400	Sadi		10.3	716,828	2,804,598	418
South Hippolyte	23FEAC001891	3.3	685,331	2,803,598	400	Sadi	23ASAC002472	8.3	714,128	2,804,798	418
South	23FEAC001892	5.0	685,426	2,803,594	400	Sadi	23ASAC002473	2.1	714,227	2,804,801	418
South Hippolyte	23FEAC001893	4.6	685,329	2,803,797	400	Sadi	23ASAC002474	9.3	714,426	2,804,799	418
South	23FEAC001894	7.1	685,424	2,803,799	400	Sadi	23ASAC002475	10.5	714,625	2,804,796	418
South	23FEAC001895	7.0	685,430	2,804,200	401	Sadi	23ASAC002476	10.4	714,128	2,804,998	418
South	23FEAC001896	2.6	685,523	2,804,197	401	Sadi	23ASAC002477	10.1	714,330	2,805,000	418
Hippolyte South	23FEAC001897	2.0	685,529	2,804,397	401	Sadi	23ASAC002478	9.1	714,529	2,804,999	418
Hippolyte South	23FEAC001898	5.7	685,723	2,804,401	401	Sadi	23ASAC002479	10.1	714,727	2,804,999	418
Hippolyte South	23FEAC001899	3.4	685,927	2,804,398	401	Sadi	23ASAC002480	10.0	715,197	2,805,198	418
Hippolyte South	23FEAC001900	7.2	686,123	2,804,399	401	Sadi	23ASAC002481	10.2	715,300	2,805,199	418
Hippolyte South	23FEAC001901	2.6	686,325	2,804,397	403	Sadi	23ASAC002482	10.1	715,398	2,805,199	418
Hippolyte South	23FEAC001902	1.1	686,522	2,804,399	404	Sadi	23ASAC002483	10.5	715,499	2,805,200	418
Hippolyte South	23FEAC001904	1.6	688,225	2,804,596	399	Sadi	23ASAC002484	10.3	715,599	2,805,199	418
Hippolyte South	23FEAC001905	1.0	688,224	2,804,799	399	Sadi	23ASAC002485	9.9	715,699	2,805,203	418
Hippolyte South	23FEAC001906	1.1	688,313	2,804,803	399	Sadi	23ASAC002486	10.9	715,800	2,805,198	418
Hippolyte South	23FEAC001907	2.0	688,425	2,804,797	399	Sadi	23ASAC002487	10.3	715,827	2,805,398	418
Hippolyte South	23FEAC001908	1.8	688,330	2,804,997	400	Sadi	23ASAC002488	9.1	715,726	2,805,598	418
Hippolyte South	23FEAC001909	2.0	688,427	2,804,996	400	Sadi	23ASAC002489	10.4	715,829	2,805,600	418
Hippolyte South	23FEAC001910	3.0	688,528	2,804,998	400	Sadi	23ASAC002490	10.3	715,826	2,805,796	418
Hippolyte South	23FEAC001911	4.0	688,629	2,804,997	400	Sadi	23ASAC002491	10.3	715,698	2,805,997	418
Hippolyte South	23FEAC001912	1.1	688,728	2,804,997	400	Sadi	23ASAC002492	8.2	715,799	2,806,003	418
Hippolyte South	23FEAC001913	2.1	688,820	2,804,995	401	Sadi	23ASAC002493	4.8	716,297	2,806,000	418
Hippolyte South	23FEAC001914	2.3	688,213	2,805,798	402	Sadi	23ASAC002494	10.2	716,400	2,806,000	418
Hippolyte South	23FEAC001915	1.0	688,335	2,805,795	403	Sadi	23ASAC002495	2.8	716,499	2,805,998	418
Hippolyte South	23FEAC001916	3.3	688,432	2,805,795	403	Sadi	23ASAC002496	10.6	716,599	2,805,999	418
Hippolyte South	23FEAC001917	3.0	688,523	2,805,794	403	Sadi	23ASAC002497	10.7	716,700	2,805,998	418
Hippolyte South	23FEAC001918	5.1	686,729	2,805,998	406	Sadi	23ASAC002498	5.0	716,727	2,806,399	418
Hippolyte	23FEAC001919	4.1	686,831	2,805,997	406	Sadi	23ASAC002499	4.5	716,698	2,806,802	418
South Hippolyte South	23FEAC001920	1.7	688,226	2,805,996	403	Sadi	23ASAC002500	2.7	716,926	2,807,997	420
Hippolyte	23FEAC001921	2.9	688,329	2,805,997	403	Sadi	23ASAC002501	7.3	717,028	2,807,999	420
South Hippolyte	23FEAC001922	2.0	683,133	2,804,794	392	Sadi	23ASAC002504	4.6	714,130	2,806,993	419
South Hippolyte	23FEAC001923	3.5	683,221	2,804,793	393	Sadi	23ASAC002506	2.6	714,530	2,806,990	419
South Hippolyte	23FEAC001924	1.0	683,328	2,804,794	394	Sadi	23ASAC002507	7.3	714,727	2,806,998	419
South Hippolyte	23FEAC001925	2.1	682,933	2,804,595	392	Sadi	23ASAC002508	7.3	714,825	2,806,999	419
South Hippolyte	23FEAC001926	2.0	683,029	2,804,594	392	Sadi	23ASAC002509	6.7	713,933	2,807,193	420
South Hippolyte	23FEAC001926 23FEAC001927			2,804,594	392				713,933		419
South Hippolyte		7.0	683,126			Sadi	23ASAC002510	7.6		2,807,193	
South Hippolyte	23FEAC001928	1.4	683,229	2,804,593	392	Sadi	23ASAC002511	4.5	714,134	2,807,192	419
South	23FEAC001929	4.0	683,330	2,804,595	393	Sadi	23ASAC002512	5.7	714,332	2,807,192	419

Prospect	Hole ID	Total Depth	E	N	RL	Prospect	Hole ID	Total Depth	E	N	RL
Hippolyte	23FEAC001930	m	C02 424	2 004 504	202	C-di	224545002542	m	744 520	2.007.402	440
South Hippolyte		2.2	683,431	2,804,594	393	Sadi	23ASAC002513	1.6	714,530	2,807,192	419
South Hippolyte	23FEAC001931	1.3	683,530	2,804,593	394	Sadi	23ASAC002514	7.3	714,728	2,807,192	419
South	23FEAC001932	2.0	683,127	2,803,401	389	Sadi	23ASAC002515	7.6	714,931	2,807,189	419
South Hippolyte	23FEAC001933	4.9	683,331	2,803,401	390	Sadi	23ASAC002516	7.0	713,933	2,807,392	419
South	23FEAC001934	2.1	683,127	2,803,203	389	Sadi	23ASAC002517	7.3	714,034	2,807,393	419
South	23FEAC001935	6.4	683,324	2,803,200	390	Sadi	23ASAC002518	6.8	714,233	2,807,393	419
South	23FEAC001936	5.0	683,523	2,803,200	390	Sadi	23ASAC002519	2.3	714,432	2,807,390	419
Hippolyte South	23FEAC001937	2.8	683,725	2,803,198	391	Sadi	23ASAC002520	7.1	714,632	2,807,393	419
Hippolyte South	23FEAC001938	4.8	683,930	2,803,198	392	Sadi	23ASAC002521	7.4	714,830	2,807,390	419
Hippolyte South	23FEAC001939	1.5	683,226	2,802,999	389	Sadi	23ASAC002522	6.9	713,928	2,807,593	419
Hippolyte South	23FEAC001940	3.8	683,432	2,802,999	389	Sadi	23ASAC002523	2.1	714,027	2,807,591	419
Hippolyte South	23FEAC001941	1.9	683,634	2,803,000	390	Sadi	23ASAC002524	3.1	713,930	2,808,595	419
Hippolyte South	23FEAC001942	2.0	683,831	2,803,000	391	Sadi	23ASAC002525	1.4	714,128	2,808,600	419
Hippolyte South	23FEAC001943	1.7	684,028	2,802,998	391	Sadi	23ASAC002526	7.0	713,129	2,808,793	421
Hippolyte South	23FEAC001944	1.9	684,126	2,803,000	392	Sadi	23ASAC002527	6.7	713,329	2,808,794	421
Hippolyte South	23FEAC001945	2.2	683,725	2,802,797	389	Sadi	23ASAC002528	7.1	713,525	2,808,794	421
Hippolyte South	23FEAC001946	1.0	683,829	2,802,798	390	Sadi	23ASAC002529	4.9	713,728	2,808,794	420
Hippolyte South	23FEAC001947	1.3	683,929	2,802,799	391	Sadi	23ASAC002530	3.3	713,929	2,808,798	419
Hippolyte South	23FEAC001948	2.2	684,027	2,802,799	391	Sadi	23ASAC002531	4.1	713,133	2,808,993	420
Hippolyte South	23FEAC001949	1.2	684,129	2,802,799	391	Sadi	23ASAC002532	5.5	713,328	2,808,996	421
Hippolyte South	23FEAC001950	2.1	683,725	2,802,605	389	Sadi	23ASAC002533	7.0	713,527	2,808,996	420
Hippolyte South	23FEAC001951	3.4	683,826	2,802,598	389	Sadi	23ASAC002534	7.0	713,729	2,808,991	420
Hippolyte South	23FEAC001952	2.0	683,911	2,802,595	390	Sadi	23ASAC002535	2.3	712,730	2,809,195	420
Hippolyte South	23FEAC001953	0.9	684,029	2,802,603	390	Sadi	23ASAC002536	5.6	712,931	2,809,195	420
Hippolyte South	23FEAC001954	3.3	682,330	2,801,597	383	Sadi	23ASAC002537	6.8	713,128	2,809,192	420
Hippolyte South	23FEAC001955	2.0	682,531	2,801,597	384	Sadi	23ASAC002538	3.0	709,233	2,808,396	422
Hippolyte South	23FEAC001956	2.2	683,326	2,800,997	384	Sadi	23ASAC002539	2.9	709,432	2,808,396	421
Hippolyte South	23FEAC001957	2.0	683,526	2,800,998	385	Sadi	23ASAC002540	5.1	709,929	2,808,399	421
Hippolyte	23FEAC001958	2.0	683,725	2,800,999	385	Sadi	23ASAC002541	2.3	709,927	2,808,595	421
South Hippolyte South	23FEAC001959	2.4	683,831	2,801,000	385	Sadi	23ASAC002542	1.5	709,930	2,808,999	420
Hippolyte	23FEAC001960	1.5	683,933	2,800,999	386	Sadi	23ASAC002543	2.5	717,025	2,810,803	423
South Hippolyte	23FEAC001961	4.0	684,027	2,800,999	386	Sadi	23ASAC002544	10.3	717,224	2,810,800	423
South Hippolyte	23FEAC001962	5.0	683,636	2,800,795	384	Sadi	23ASAC002545	10.4	717,426	2,810,803	423
South Hippolyte	23FEAC001963	3.3	683,827	2,800,733	385	Sadi	23ASAC002545 23ASAC002546	10.5	717,426	2,810,800	423
South Hippolyte	23FEAC001964	1.8	683,331	2,800,598	383	Sadi	23ASAC002547	10.3	717,825	2,810,799	423
South Hippolyte	23FEAC001964 23FEAC001965	0.8	683,531	2,800,598	384	Sadi	23ASAC002547 23ASAC002548	10.3	717,823	2,810,797	423
South Hippolyte											
South Hippolyte	23FEAC001966	6.3	683,734	2,800,601	384	Sadi	23ASAC002549	10.2	717,329	2,810,998	423
South	23FEAC001967	2.0	683,932	2,800,596	385	Sadi	23ASAC002550	5.1	717,527	2,810,999	423
South	23FEAC001968	2.0	684,033	2,799,198	384	Sadi	23ASAC002551	5.0	717,728	2,810,996	423

Prospect	Hole ID	Total Depth m	E	N	RL	Prospect	Hole ID	Total Depth m	E	N	RL
Hippolyte South	23FEAC001969	1.3	684,126	2,799,195	385	Sadi	23ASAC002552	10.2	717,927	2,810,995	423
Hippolyte South	23FEAC001970	2.0	683,736	2,798,994	384	Sadi	23ASAC002553	10.4	718,128	2,810,999	423
Hippolyte South	23FEAC001971	0.8	683,931	2,798,995	384	Sadi	23ASAC002554	10.3	718,423	2,811,000	422
Hippolyte South	23FEAC001972	0.7	684,032	2,798,996	384	Sadi	23ASAC002555	7.5	718,425	2,811,197	422
Hippolyte South	23FEAC001973	2.0	683,132	2,797,202	379	Sadi	23ASAC002556	6.7	717,128	2,811,398	424
Hippolyte South	23FEAC001997	7.4	683,236	2,799,994	382	Sadi	23ASAC002557	7.5	717,225	2,811,396	424
Hippolyte South	23FEAC001998	1.2	683,826	2,800,009	384	Sadi	23ASAC002558	7.1	717,425	2,811,398	424
Hippolyte South	23FEAC001999	1.2	684,029	2,799,999	385	Sadi	23ASAC002559	7.5	717,626	2,811,398	423
Hippolyte South	23FEAC002000	2.3	684,234	2,799,986	385	Sadi	23ASAC002560	3.7	717,828	2,811,399	423
Hippolyte South	23FEAC002001	1.2	684,412	2,800,006	387	Sadi	23ASAC002561	7.3	718,024	2,811,397	423
Hippolyte South	23FEAC002002	0.9	684,620	2,799,996	387	Sadi	23ASAC002562	5.3	718,223	2,811,399	423
Hippolyte South	23FEAC002003	1.9	684,828	2,799,998	388	Sadi	23ASAC002563	5.2	718,426	2,811,400	422
Hippolyte South	23FEAC002004	2.3	684,928	2,800,197	389	Sadi	23ASAC002564	5.2	717,126	2,811,598	424
Hippolyte South	23FEAC002005	1.1	683,316	2,800,414	383	Sadi	23ASAC002565	7.0	717,229	2,811,601	424
Hippolyte South	23FEAC002006	2.0	684,430	2,800,399	387	Sadi	23ASAC002566	6.7	718,526	2,811,600	422
Hippolyte South	23FEAC002007	2.2	684,531	2,800,399	388	Sadi	23ASAC002567	6.2	718,628	2,811,601	422
Hippolyte South	23FEAC002008	1.6	684,629	2,800,400	388	Sadi	23ASAC002568	7.2	718,831	2,811,602	422
Hippolyte South	23FEAC002009	2.0	684,730	2,800,399	388	Sadi	23ASAC002569	7.3	717,126	2,811,798	424
Hippolyte South	23FEAC002010	2.1	684,827	2,800,397	388	Sadi	23ASAC002570	5.0	717,224	2,811,799	424
Hippolyte South	23FEAC002011	5.0	684,934	2,800,393	389	Sadi	23ASAC002571	3.9	717,427	2,811,798	424
Hippolyte South	23FEAC002012	7.5	683,127	2,800,598	383	Sadi	23ASAC002572	5.8	717,625	2,811,798	424
Hippolyte South	23FEAC002013	5.9	683,030	2,800,798	383	Sadi	23ASAC002573	7.3	717,826	2,811,799	424
Hippolyte South	23FEAC002014	5.1	683,229	2,800,799	384	Sadi	23ASAC002574	3.4	718,026	2,811,798	423
Hippolyte South	23FEAC002015	1.2	684,427	2,800,796	387	Sadi	23ASAC002575	2.0	718,225	2,811,798	423
Hippolyte South	23FEAC002016	1.2	684,525	2,800,800	388	Sadi	23ASAC002576	6.3	718,424	2,811,799	422
Hippolyte South	23FEAC002017	2.0	684,632	2,800,797	388	Sadi	23ASAC002577	5.9	718,623	2,811,799	422
Hippolyte South	23FEAC002018	1.2	684,730	2,800,781	388	Sadi	23ASAC002578	4.1	718,822	2,811,797	422
Hippolyte South	23FEAC002019	2.0	684,825	2,800,796	388	Sadi	23ASAC002579	2.2	718,929	2,811,800	422
Hippolyte South	23FEAC002020	4.1	684,929	2,800,796	388	Sadi	23ASAC002580	7.1	717,329	2,811,995	425
Hippolyte South	23FEAC002021	5.1	682,932	2,800,997	383	Sadi	23ASAC002581	2.4	717,530	2,811,996	425
Hippolyte South	23FEAC002022	0.9	683,129	2,800,997	384	Sadi	23ASAC002582	4.8	717,730	2,811,995	424
Hippolyte South	23FEAC002023	5.0	682,932	2,801,202	384	Sadi	23ASAC002583	4.6	717,928	2,811,996	424
Hippolyte South	23FEAC002024	3.0	683,032	2,801,196	384	Sadi	23ASAC002585	3.6	718,334	2,811,994	423
Hippolyte South	23FEAC002025	3.0	683,134	2,801,198	384	Sadi	23ASAC002586	2.1	718,529	2,811,994	423
Hippolyte South	23FEAC002026	1.0	682,521	2,801,396	384	Sadi	23ASAC002587	8.8	712,534	2,810,799	422
Hippolyte South	23FEAC002027	1.3	682,627	2,801,396	384	Sadi	23ASAC002588	10.3	712,730	2,810,799	422
Hippolyte South	23FEAC002028	1.8	682,728	2,801,396	385	Sadi	23ASAC002589	6.4	711,731	2,810,998	424
Hippolyte South	23FEAC002029	7.2	682,934	2,801,393	384	Sadi	23ASAC002590	1.3	711,831	2,810,996	424
Hippolyte South	23FEAC002095	4.8	686,024	2,801,598	393	Sadi	23ASAC002591	1.1	711,935	2,810,995	424

Prospect	Hole ID	Total Depth	E	N	RL	Prospect	Hole ID	Total Depth	E	N	RL
Hippolyte South	23FEAC002096	m 4.9	686,129	2,801,596	393	Sadi	23ASAC002592	m	712,036	2,811,000	423
Hippolyte South	23FEAC002097	2.6	686,229	2,801,596	393	Sadi	23ASAC002593	3.9	712,129	2,810,997	423
Hippolyte South	23FEAC002098	0.5	686,331	2,801,597	394	Sadi	23ASAC002594	10.7	712,229	2,810,998	423
Hippolyte South	23FEAC002099	1.5	686,428	2,801,597	394	Sadi	23ASAC002595	8.7	712,329	2,810,998	422
Hippolyte South	23FEAC002100	1.6	686,523	2,801,598	393	Sadi	23ASAC002596	10.4	712,432	2,810,998	422
Hippolyte South	23FEAC002101	3.2	686,627	2,801,596	394	Sadi	23ASAC002597	10.4	712,531	2,810,998	422
Hippolyte South	23FEAC002102	1.9	686,725	2,801,598	394	Sadi	23ASAC002598	7.0	712,630	2,810,997	422
Hippolyte South	23FEAC002103	1.0	685,431	2,801,995	395	Sadi	23ASAC002599	8.0	711,129	2,811,601	425
Hippolyte South	23FEAC002104	3.2	685,527	2,801,995	395	Sadi	23ASAC002600	3.4	711,227	2,811,601	425
Hippolyte South	23FEAC002105	3.8	685,629	2,801,995	395	Sadi	23ASAC002601	5.3	711,326	2,811,601	424
Hippolyte South	23FEAC002106	4.5	685,427	2,802,195	396	Sadi	23ASAC002602	3.7	711,427	2,811,602	424
Hippolyte South	23FEAC002107	4.2	685,531	2,802,198	396	Sadi	23ASAC002603	8.2	711,526	2,811,602	424
Hippolyte South	23FEAC002108	4.8	685,628	2,802,198	396	Sadi	23ASAC002604	10.5	711,627	2,811,602	424
Hippolyte South	23FEAC002109	2.1	686,925	2,802,200	396	Sadi	23ASAC002605	8.4	711,633	2,811,803	424
Hippolyte South	23FEAC002110	2.1	687,029	2,802,195	396	Sadi	23ASAC002606	9.7	711,728	2,811,804	424
Hippolyte South	23FEAC002111	4.8	685,131	2,802,395	396	Sadi	23ASAC002607	10.3	711,829	2,811,803	424
Hippolyte South	23FEAC002112	3.3	685,228	2,802,396	396	Sadi	23ASAC002608	10.1	711,930	2,811,804	424
Hippolyte South	23FEAC002113	1.3	685,330	2,802,394	397	Sadi	23ASAC002609	1.4	712,031	2,811,787	424
Hippolyte South	23FEAC002114	4.5	685,433	2,802,395	397	Sadi	23ASAC002611	1.0	712,228	2,811,802	424
Hippolyte South	23FEAC002115	6.6	684,730	2,802,602	396	Sadi	23ASAC002612	5.8	711,728	2,812,001	425
Hippolyte South	23FEAC002116	3.0	684,909	2,802,596	397	Sadi	23ASAC002613	2.5	711,826	2,812,002	425
Hippolyte South	23FEAC002117	3.1	685,132	2,802,596	397	Sadi	23ASAC002614	3.1	711,928	2,812,003	425
Hippolyte South	23FEAC002118	6.8	685,232	2,802,596	397	Sadi	23ASAC002615	4.9	712,030	2,812,002	425
Hippolyte South	23FEAC002119	7.0	685,333	2,802,594	397	Sadi	23ASAC002616	0.6	712,124	2,812,006	425
Hippolyte South	23FEAC002120	6.7	685,432	2,802,594	397	Sadi	23ASAC002617	9.9	711,031	2,812,198	425
Hippolyte South	23FEAC002121	7.2	685,130	2,802,797	398	Sadi	23ASAC002618	8.9	711,235	2,812,198	425
Hippolyte South	23FEAC002122	5.1	685,231	2,802,794	398	Sadi	23ASAC002619	3.5	711,433	2,812,196	425
Hippolyte South	23FEAC002123	2.0	684,533	2,802,995	395	Sadi	23ASAC002620	1.3	711,630	2,812,197	425
Hippolyte South	23FEAC002124	6.1	684,733	2,802,996	397	Sadi	23ASAC002621	0.6	711,830	2,812,196	425
Hippolyte South	23FEAC002125	2.2	684,933	2,802,996	398	Sadi	23ASAC002622	1.0	712,011	2,812,197	425
Hippolyte South	23FEAC002126	5.2	685,132	2,802,995	398	Sadi	23ASAC002623	1.7	711,533	2,812,393	425
Hippolyte South	23FEAC002127	7.0	685,232	2,802,993	399	Sadi	23ASAC002624	4.5	711,730	2,812,395	425
Hippolyte South	23FEAC002128	2.1	685,147	2,803,193	399	Sadi	23ASAC002625	4.0	711,929	2,812,391	425
Hippolyte South	23FEAC002129	4.2	685,229	2,803,194	399	Sadi	23ASAC002626	2.2	712,133	2,812,393	425
Hippolyte South	23FEAC002130	3.8	684,532	2,803,398	396	Sadi	23ASAC002627	2.0	712,329	2,812,393	425
Hippolyte South	23FEAC002131	2.9	684,730	2,803,401	397	Sadi	23ASAC002628	2.1	712,333	2,812,592	425
Hippolyte South	23FEAC002132	5.0	684,927	2,803,403	398	Sadi	23ASAC002629	1.3	712,548	2,812,593	425
Hippolyte South	23FEAC002133	3.2	685,127	2,803,398	399	Sadi	23ASAC002631	1.8	712,926	2,812,591	423
Hippolyte South	23FEAC002134	5.5	685,227	2,803,399	399	Sadi	23ASAC002632	0.6	712,620	2,812,799	425

_		Total Depth	_		5.	_		Total Depth	_		
Prospect	Hole ID	m	E	N	RL	Prospect	Hole ID	m	E	N	RL
		- '''									
Hippolyte South	23FEAC002135	7.0	685,128	2,803,601	399	Sadi	23ASAC002633	1.1	712,830	2,812,799	424
Hippolyte South	23FEAC002136	7.2	685,218	2,803,598	399	Sadi	23ASAC002636	3.3	711,628	2,812,998	426
Hippolyte South	23FEAC002137	7.4	685,128	2,803,798	399	Sadi	23ASAC002637	1.2	711,758	2,813,000	426
Hippolyte South	23FEAC002138	7.0	685,225	2,803,800	399	Sadi	23ASAC002638	5.1	713,026	2,812,993	423
Hippolyte South	23FEAC002139	6.9	685,622	2,804,400	401	Sadi	23ASAC002639	1.7	713,254	2,813,188	422
Hippolyte South	23FEAC002140	3.2	685,826	2,804,400	401	Sadi	23ASAC002640	2.3	713,427	2,813,197	422
Hippolyte South	23FEAC002141	5.8	686,025	2,804,397	401	Sadi	23ASAC002641	3.4	713,525	2,813,203	422
Hippolyte South	23FEAC002142	7.2	686,226	2,804,398	402	Sadi	23ASAC002643	2.3	713,428	2,813,596	425
Hippolyte South	23FEAC002143	4.9	686,421	2,804,400	403	Sadi	23ASAC002645	7.4	713,428	2,813,796	425
Hippolyte South	23FEAC002144	0.7	686,599	2,804,401	406	Sadi	23ASAC002646	7.5	713,527	2,813,797	425
Hippolyte South	23FEAC002145	4.9	685,630	2,804,600	402	Sadi	23ASAC002647	2.9	713,626	2,813,796	425
Hippolyte South	23FEAC002146	5.6	685,826	2,804,598	402	Sadi	23ASAC002648	2.7	713,727	2,813,795	426
Hippolyte South	23FEAC002147	1.6	685,999	2,804,596	403	Sadi	23ASAC002649	7.4	713,830	2,813,798	426
Hippolyte South	23FEAC002148	1.0	686,147	2,804,600	405	Sadi	23ASAC002650	7.2	713,928	2,813,796	426
Hippolyte South	23FEAC002149	1.2	686,230	2,804,598	404	Sadi	23ASAC002651	7.3	714,730	2,813,592	424
Hippolyte South	23FEAC002150	1.7	686,331	2,804,598	405	Sadi	23ASAC002652	7.3	714,831	2,813,591	424
Hippolyte South	23FEAC002151	2.4	686,533	2,804,599	405	Sadi	23ASAC002653	7.3	714,936	2,813,590	424
Hippolyte South	23FEAC002152	5.2	685,028	2,802,192	395	Sadi	23ASAC002654	2.0	714,927	2,813,400	424
Hippolyte South	23FEAC002153	7.1	685,126	2,802,195	395	Sadi	23ASAC002655	2.4	714,900	2,813,194	424
Hippolyte South	23FEAC002154	4.5	685,229	2,802,195	396						

Note: All holes drilled vertical, Grid: WGS84_29N

Appendix 3 – Figures for each Prospect

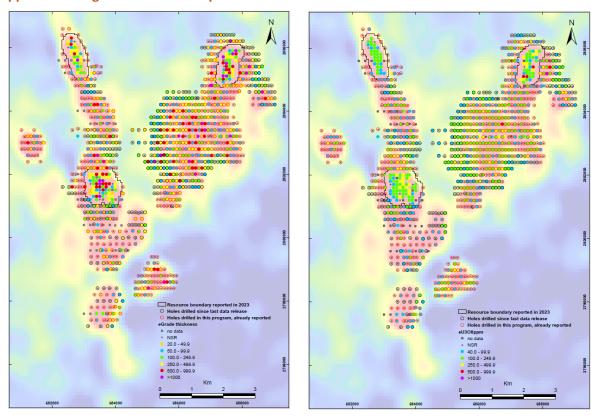


Figure 4. Hippolyte South: showing grade*thickness and U_3O_8 grades from this program along with those from previous drilling in relation to airborne U-radiometric anomalies and current resource outlines

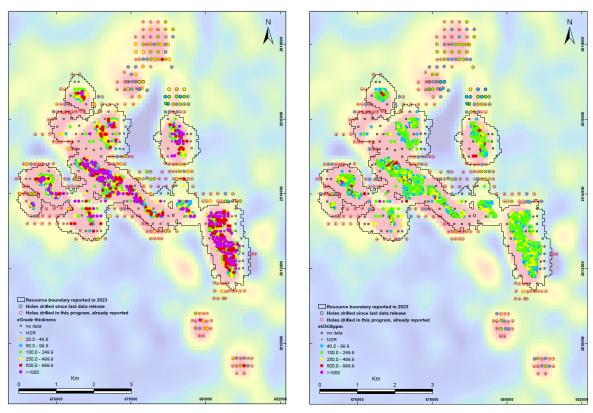


Figure 5. Hippolyte North: showing grade*thickness and U_3O_8 grades from this program along with those from previous drilling in relation to airborne U-radiometric anomalies and current resource outlines

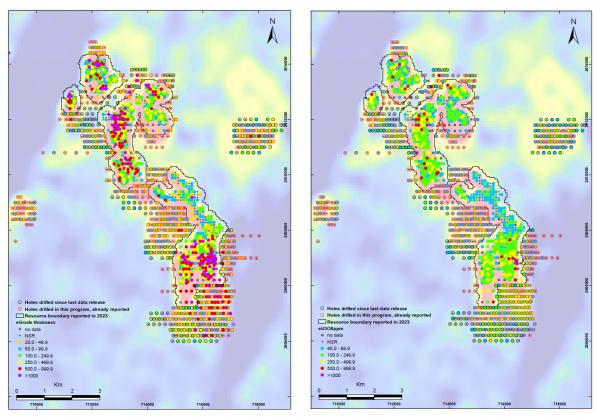


Figure 6. Sadi: showing grade*thickness and U_3O_8 grades from this program along with those from previous drilling in relation to airborne U-radiometric anomalies and current resource outlines

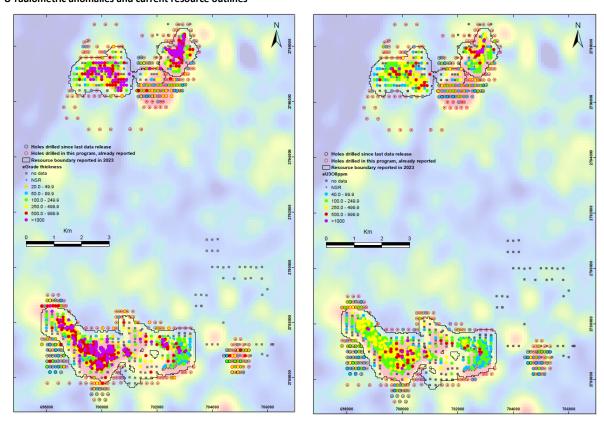


Figure 7. Lazare North and Lazare South: showing grade*thickness and U_3O_8 grades from this program along with those from previous drilling in relation to airborne U-radiometric anomalies and current resource outlines

JORC Code 2012 Table 1 Appendix 5A ASX Listing Rules 2024 Tiris Uranium Exploration Results

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 While several drilling programs have been completed from 2010 to the present, the significant intercepts data presented here is from the current ongoing drilling program. In total, 8972 holes have been drilled on the leases, compiled of 8455 AC holes, 392 RC holes, and 125 PQ core holes. From the current program of 2996 AC holes, significant intercepts (100ppm cutoff) obtained from 583 holes for 2674 metres, are reported here. Results from previous drilling programs are not presented in the report but are shown in the figures, with the difference between the two datasets clearly marked. Historical holes are also shown in the drill collar table. The drilling programs listed in sequential order were as follows: An air-core (AC) drilling program in 2010/11 with grade determined by chemical analysis of drill samples. An AC drilling program at Lazare in 2012 with grade estimation by chemical analysis of drill samples An AC drilling program at Sadi in 2015 with grade estimation by chemical analysis of drill samples An AC drilling program in 2017 with grade estimation by downhole gamma logging An AC drilling program in 2022 with grade estimation by downhole gamma logging Diamond drilling (DD) programs in 2017 and 2022 with grade estimation by downhole gamma logging. Down hole gamma logging, in the current program is by 2 Auslog down-hole gamma sondes operated by Poseidon Geophysics (Pty) Ltd based in Gaborone Botswana using geophysicists employed by Poseidon geophysics The 2 sondes (serial numbers T093 and T272) were sent to the Department of Environment, Water & Natural Resources, Adelaide South Australia for calibration prior to the surveys in both 2017, 2022 and the current program.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, 	 The 2024 AC drilling program is being conducted by Sahara Natural Resources using their purpose- built SNR SAC15 multi-wheel drive rig.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 etc). Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Sample recovery is irrelevant in the current program because downhole gamma logging is being used to determine grade.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	Last sample from each hole retained in chip trays
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	Sample techniques and sample preparation are irrelevant in the current program because downhole gamma logging is being used to determine grade.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Downhole gamma logging was performed by 2 down-hole Auslog gamma sondes comprising: DLS5 Winch Controller W600-1 12V Portable Winch A075 Natural Gamma Tool Logging procedures involved: Drill holes were gamma logged as soon as possible after drilling to avoid radon build-up. Each borehole logged in both directions to verify consistency. Logging speed: 2 metres per minute Sampling interval: 1 cm At least one hole was re-logged after each 20 holes as a repeatability check. A reference hole was established and relogged every 2 days as a check on consistency.

Criteria	JORC Code explanation	Commentary
	·	 Gamma logging procedures & interpretation were supervised by consultant David Wilson who qualifies as a Competent Person in these matters.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Including prior drilling programs, 8972 holes were drilled in total. Of these, 8455 were aircore, 392 were RC, and 125 were PQ diamond core. In Tiris East over 80% of holes were surveyed using downhole gamma, while diamond drillholes were both gamma logged and chemically assayed for validation purposes. The holes drilled in 2009 and 2015 were excluded from all resource estimates and this report (887 holes). Database management was undertaken by Reflex Hub in Perth prior to July 2019, and by Earth SQL in Melbourne after that date. Downhole gamma data is automatically recorded during the survey process undertaken by Poseidon Geophysics. David Wilson from 3D Exploration then undertook analysis and quality control of downhole gamma information. In 2022, David Wilson from 3D Exploration completed a comparison of gamma logs against assay information in PQ coreholes. To test for radioactive disequilibrium, 343 samples were sent to Australian Nuclear Science and Technology Organisation (ANSTO). in Australia, with results compiled and interpreted by D Wilson of 3D Exploration. Disequilibrium factors were produced in two different ways. The first was based on laboratory measurements made at ANSTO, which suggested a disequilibrium factor of 1.29. The second was comparison of drill core assay results against downhole gamma logging which suggested a conversion factor of 1.16. When the apparent under estimation of grade by ICP analysis (in comparison to the more accurate DNA analysis) by 7% is taken into consideration the drill hole assay data imply a conversion factor of 1.24. Aura personnel decided a disequilibrium factor of 1.25 was appropriate and applied this to convert eU308 grades to U308 grades. The disequilibrium factor of 1.25 has been applied to the results presented in this report. Significant intercepts were determined by Arnold van der Heyden from H&S Consultants, the Competent Person for the most recent Mineral Resource reporting.

Criteria	JORC Code explanation	Commentary
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The drillhole collars from the current program were initially surveyed by handheld GPS with reported accuracy of +/- 15 metres. All holes from the program presented in this release were surveyed by differential surveying conducted by IRC-Magma (ISO 9001-2015) to an accuracy of +/- 20 cm in all dimensions. The grid projection used is UTM WGS84 Zone 29N.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 For the current program, most of the drilling is at 200 by 100 m spacing, but some areas were covered by initial wide-spaced lines, then any positive results were followed up progressively to a detail of 200 by 100m if results warranted the detail. Resource modelling has not yet been undertaken on the 2024 results. Significant intercepts were composited to a minimum length of 0.5m.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The surficial mineralisation is flat lying so vertical holes were drilled, intersecting the mineralisation at a high angle. The collars are spaced in a grid pattern so provide adequate coverage of the mineralisation, demonstrating a broad NW-SE linearity to the mineralisation, with some internal areas running NE-SW.
Sample security	The measures taken to ensure sample security.	 All holes in the 2024 program were geophysically surveyed by downhole gamma logging. Approximately 80% of all drillholes in Tiris East were surveyed by downhole gamma logging and for these, sample security is not relevant.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	• A site inspection was conducted by Oliver Mapeto of Coffey Mining in 2012. A resource report from 2012 was independently reviewed and confirmed by Wardell Armstrong International in 2016. A Resource Estimate at Sadi was done in 2021 by Oliver Mapeto acting then as an independent consultant. The 2018 and 2023 Mineral Resource Estimates have been carried out by independent consulting group H&S Consultants Pty Ltd. All of these consulting groups have reviewed and endorsed the sampling, grade estimation and QAQC procedures. The table of significant intercepts for the 2024 program was prepared by Arnold van der Heyden from H&S Consultants, who also undertook a field inspection in January 2024.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The drilling was conducted on 1 mineral exploration permit held 100% by Aura Energy: 2365B4 Oued EL Foule Sud, and on 2 Exploitation permits: 2492C4 Oued El Foule, 2491C4 Ain Sder held by Tiris Ressources SA. Tiris Ressources SA is owned 85% by Aura Energy subsidiary, Aura Energy Mauritania and 15% by ANARPAM, a Mauritanian Government entity. Aura has completed an Environmental and Social Impact Assessment which concluded there are no known issues arising from native title, historical sites, environmental or third-party matters which are likely to materially affect exploitation.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Aura is unaware of any prior exploration on these areas, other than governmental data gathering projects such as the PRISM-II Mauritania Minerals Project (USGS)
Geology	Deposit type, geological setting and style of mineralisation.	 The mineralisation is of the surficial uranium style. It occurs within Proterozoic rocks of the Reguibat Craton. The mineralisation is developed within near surface altered and weathered granites, and within shallow colluvium lying on granite or adjacent metasediments.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Reported in the body of this release. All drill holes were drilled vertically.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be 	 Parameters to calculate significant intercepts were: Minimum length 0.5m, Maximum internal waste 0.5m, Attempt to dilute narrow ore samples with adjacent waste, No grade cutting was applied, Composites were length weighted, Cut-off grades of 100, 80 and 40 ppm U₃O₈ were applied. Short lengths of high-grade results were diluted

Criteria	JORC Code explanation	Commentary
	 shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	with low grade results to achieve minimum length, providing the average grade of the total interval exceeded the cut-off grade. • No metal equivalents are reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 All drillholes were drilled vertically and approximately perpendicular to the thickness of the sub horizontal mineralisation.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to the ASX announcement which this table accompanies.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All recent results received and compiled to date are reported in this release. In addition to the significant results (>100 ppm), lower grade mineralisation (40-99 ppm) is presented, along with holes showing no significant results. Drilling is on-going with further results expected. Two datasets using different cutoff grades are combined for the figures and results table. The lower grade mineralisation (40 to 99 ppm) was determined using a 40ppm cutoff and the results higher than 100 ppm were determined using a 100 ppm cutoff. For the figures showing significant intercepts; if more than one intercept occurs in a hole, the upper intercept is shown.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Metallurgical testwork is ongoing. Information on processing has been reported in ASX announcement: 29 July 2019 "Tiris Uranium Definitive Feasibility Study Completed" and ASX announcement: 29 March 2023 "Tiris Enhanced Definitive Feasibility Study". ASX Release 23rd June 2022 confirms average 550% upgrading of uranium with simple screening in test-work.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	The drilling program was completed on the 4 th of April 2024 and a Mineral Resource estimate for the Tiris East area is underway.